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Parsing

machine analysis of the text structure, esp. the sentence structure

We’ve all done it at school, and sometimes machines can do it as well
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Motivation

Sentence structure itself is never a goal for practical tasks, but is extremely useful
as a preprocessing step e.g. for:

- facts extraction and opinion mining,
- text summarization,
- machine translation, etc.
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Syntax

grammar subset studying sentences and ways of combining words within a sentence

Main approaches to syntax description

1) dependency grammar

Tesniére, L. 1959. Eléments de syntaxe structurale. Paris: Klincksieck

2) phrase structure grammars

Chomsky, Noam 1957. Syntactic structures. The Hague/Paris: Mouton
3) link grammar

Daniel Sleator and Davy Temperley. 1991. Parsing English with a Link Grammar. Carnegie Mellon University Computer Science technical report, October 1991.

4) hybrid approaches
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This tree is illustrating the constituency relation.
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This tree is illustrating the dependency relation.



Before we define stuff thoroughly: an example

S Is everything OK here?
..-"""\
NP VP
| ."/\
N V PP
He looked P NP
| T ——
at D N PP
| | T
the dog P NP
I N
with D N

I I
one eye
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Before we define stuff thoroughly: an example

S
A
NP VP
l i —
N V PP
He looked P NP
| T ——
at D N PP
| | N
the dog P NP
| SN
with D N
I |
one eye

Is everything OK here?

Yes! But if we want to say one has LOOKED
with one eye, then the tree should be different

This is called attachment ambiguity
(“dunno where to hang the subtree”)

coordination ambiguity
Is widely spread as well:
[old [men and women]] vs [old men] and [women]


https://i.imgur.com/ShMtNEy.png

Example, discussion

- There may be several parse trees, this is OK
(BTW, there are parsers that yield multiple parse trees
given the text)

- sometimes there is only one ‘true’ parse tree, and this is
evident for us, but not for the machine, because we know
word meanings, context and how this world works in general

NP VP
\ /\
A A N V Adv

Colores grleen ieas slecp furiously

- itis also hard thanks to:
- ellipsis (omission of the word),
- context-dependent meanings
(“watch TV”, “how come they got into TV?”),
- morphological ambiguity

(“river flow”, “the river can flow”)

http://www .jnanam.net/slade/Trees/colourless_green_ideas.jpg?w=240
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Where the rules come from

{ (S (NP=SBJ=1 Jones)
(VP followed

- Experts (weak, expensive) (NP hiz)
. {PP=DIR inte
- Annotated data (great, also expensive) (Ne the front room))
’
({S=ADV (NP=SBJ *=1)
(VP closing
Data banks, where the sentences are parsed (NP the door)
(PP behind
(NP him)))))
-
u "
! '::;nepecnn uE(HbIH [AKP El CPEA) { (3 (ADVP=LOC Here)
6. B [PR] (NP=SBJ=1 he)
amou (onpea )»® 3TOT [A E[] XKEH NP] (VP could
aKuuu AKUMA (S EA KEH NP HEOA) '
amecme n't
e ‘ (VP be
Mameeem MATBE [S E[] MY)K TBOP 0/1] (VP seen
Ilaamosvim . (anno3) NJIATOB (S E[l MY)XX TBOP 01]
yuacmeogaa (NP *=1)
u W [PART] (P? by
e OH [S E, MY)X POJ 04 : lue T
n mulsmmm}(m ! (NP-LGS (NP Blue Throat)
Hean MBAH [S EQ MY)X MM 0f1] and
Dedoposut ... : s : = - - ®EJOPOBUY [S E/} MYXK MM 0f1] (NP his gang))))))
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Phrase structure grammar

Key points

- some words are ‘connected more tightly with
each other’ than other ones

- the words in a sentence can be grouped into
phrases, that ‘behave like a single language
entity’

- phrases can be nested

First formulated by Wilhelm Wundt (1900),
formalized by Noam Chomsky (1956) and by John
Backus (1959; BNF; independently).

NOAM CHOMSKY

Syntactic
Structures
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lllustration

Phrases can be swapped

On September seventeenth, I'd like to fly from Atlanta to Denver
I'd like to fly on September seventeenth from Atlanta to Denver
I'd like to fly from Atlanta to Denver on September seventeenth

yet words forming a phrase sometimes can’t
*On September, I'd like to fly seventeenth from Atlanta to Denver

*On I'd like to fly September seventeenth from Atlanta to Denver
*I"d like to fly on September from Atlanta to Denver seventeenth

12



Parse tree example

S
e R
NP VP
| T ——
N V PP
He looked P NP
| e ——
at D N PP
| | N
the dog P NP
| N
with D N
| |
one eye

https://i.imgur.com/ShMtNEy.png

VP - verb phrase
(approx: a verb and dependent PoS)

NP - noun phrase
(approx: a noun is a root)

PP - prepositional phrase
AP - adjective phrase

D (Det) - determinatives: articles, certain pronouns,
quantifiers, numbers, Q-words, etc.
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Formal grammar rules

Formal grammar can be treated as a set of rules,

which, after a sequence of applications to the initial

symbol (S), we use to ‘generate’ the text

Parse tree in the example could be built ONLY
if the grammar contains this set of rules:

S — NP VP
NP — N
NP > DN
NP — D N PP
VP — VPP
PP — P NP

5
.--"""""-\
NP VP
| .--"""d\
N \Y PP
He looked P NP
| T T —
at D N PP
| | e
the dog P NP
I b i
with D N
I I
one eye

N — He | dog | eye, V — looked, D — the | one, P — au | wius
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Definition

Formal grammar (aka context-free grammar)
is a tuple of...

N — a set of nonterminal symbols (e.g., NP, VP, N,...)
2 — a set of terminal symbols (all symbols but ones in N)
R — a set of production rules of type: A — B,
where
A — a nonterminal symbol,
B — a string, an element of the set of all possible strings over £ and N: (£ U N)*
S — a special ‘starting’ symbol in N

Then the language defined by this grammar is a set of all strings over Z, that can be
deduced from S using the production rules: L={w |wisin Z *and S = w}

16



Chomsky Normal Form (CNF)

Any context-free grammar can be converted to the equivalent one (in terms of the
defined language) that would contain production rules that would ‘generate’ not
more than 2 ‘branches’, e.g.:

A —> BX
X - CD

A—->BCD >

17



How to parse any CFG

Naive approach: traverse all possible parse trees? :)

Grammars are well studied objects, those who have taken classes on
compilers should be very familiar with ones

Program code is long; one needs very effective algorithms to parse it

Sentences in natural languages are usually shorter (though some
extremes exist), hence the requirements to parsing speed are lower.
We will take a look at probably the simplest algorithm

18
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Cocke-Younger-Kasami algorithm (CYK)

From bottom to top, dynamic programming, the grammar should be in the form of CNG

The idea, first approximation: for the sentence of length N, fill the 3D array with markers
P[l, s, a] determining whether there is a rule that parses the substring a[s:s+l]

S

VP
VP
VP
PP
NP
NP

v
P
N
N

Det

A A

NP VP
VP PP
V NP
eats

P NP
Det N
she
eats
with
fish
fork

a

CYK table
s
v
—
 Tw | | |ep]
| s | ‘NP NP

NP |V.VP Det.| N | P |Det| N |

she | eats a |[fish with| a |fork
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CYK-algorithm

let the input be a string I consisting of n characters: a; ... a,.
let the grammar contain r nonterminal symbols R; ... R,, with start symbol R;.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.

The input is a sentence of length n
Boolean 3D array P is initialized with False

21



CYK-algorithm

let the input be a string I consisting of n characters: a; ... a,.

let the grammar contain r nonterminal symbols R; ... R,, with start symbol R;.

let P[n,n,r] be an array of booleans. Initialize all elements of P to false.

for each s =1 to n
for each unit production R, -> as
set P[1,s,v] = true

First we traverse the rules of the kind A — B, where B is a terminal symbol,
and set for those Bs TRUE for the corresponding rules and length = 1

22



CYK-algorithm

let the input be a string I consisting of n characters: a; ... a,.
let the grammar contain r nonterminal symbols R; ... R,, with start symbol R;.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.

for each s =1 ton
for each unit production R, -> as
set P[1,s,v] = true

for each 1 = 2 to n -- Length of span
for each s = 1 to n-1+1 -- Start of span

For all substrings set by length | and starting index s

23



CYK-algorithm

let the input be a string I consisting of n characters: a; ... a,.
let the grammar contain r nonterminal symbols R; ... R,, with start symbol R;.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.

for each s =1 ton
for each unit production R, -> as
set P[1,s,v] = true

for each 1 = 2 to n -- Length of span
for each s = 1 to n-1+1 -- Start of span

for each p = 1 to -1 -- Partition of span [ s:is+p || s+p:s+l

for each production R; -> Rp R, ’

if P[p,s,b] and P[l-p,s+p,c] then set P[l,s,a] = true ! \

Rb—>... Rc—>...

...and all possible splits into two substrings we check if there is such a way to parse each of the two
substrings so that their ‘heads’ (here: R, and R ) are in the right side of some rule (here: R, — R R )

If yes, set the corresponding array element to True.



CYK-algorithm

let the input be a string I consisting of n characters: a; ... a,.
let the grammar contain r nonterminal symbols R; ... R,, with start symbol R;.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.

for each s =1 ton
for each unit production R, -> as
set P[1,s,v] = true

for each 1 = 2 to n -- Length of span
for each s = 1 to n-1+1 -- Start of span
for each p = 1 to -1 -- Partition of span
for each production R; -> Rp R,
if P[p,s,b] and P[l-p,s+p,c] then set P[l,s,a] = true

if P[n,1,1] is true then

I is member of language
else

I is not member of language

25



CYK-algorithm: discussion

e As in Viterbi algorithms, we can store backpointers and do a backward
pass to recover all possible parse trees

e There may exist several solutions, usually we need just one
e For the analysis we have to ‘denormalize’ CFG back from CNF
e Cubic complexity: O(n® |G|)

e Complexity for parsing with arbitrary CFGs can be reduced in terms of the ‘big O’,

e.g. using the fast matrix product
Valiant, Leslie G. (1975). "General context-free recognition in less than cubic time". J. Comput. Syst. Sci. 10 (2): 308-314.
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BTW: shallow parsing

Sometimes for practical tasks shallow parsing is enough, e.g.
chunking extracting several non-intersecting phrases

[np The morning flight] [pp from] [yp Denver] [yp has arrived. ]

E.g. we want to extract noun phrases:

[Np The morning flight] from [yp Denver] has arrived.

This can even be treated as a sequence learning task

The morning flight from Denver has arrived.
BNPINP INPO BNP O O

To evaluate all this, we compute precision, recall and f-measure for the selected chunks, taking exact borders
matches + tags matches

28
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Probabilistic Context-Free Grammars (PGFG)

...are a way to choose the best possible parse; we’ll assign probability to each
production rule

N — a set of nonterminal symbols (e.g., NP, VP, N,...)

> — a set of terminal symbols (all symbols but ones in N)

R — a set of production rules of type: A — B [p],

where

A — a nonterminal symbol,
B — a string, an element of the set of all possible strings over £ and N: (£ U N)*
P(B|A) — a numbre between 0 and 1, such that ZB pP(B|A) =1

S — a special ‘starting’ symbol in N

PCFG is consistent if the sum of probabilities of all possible sentences in the language in concern =1
30



PCFG in action

The probability of the parse tree T for the sentence S is a product of all production
rules that ‘were applied during the generation of the sentence’

n
P(T,S) = | | P(RHS|LHS;)

i=1

also we know that
P(T,S) = P(T)P(S|T)

and P(S|T) = 1, because the parse contains all sentence’s words S, so

P(T,S) = P(T)P(S|T) = P(T)

31



PCFG in action

This is what it looks like Rules P
—

S — VP .05

Having multiplied conditional probabilities we VP — Verb NP 20

get probabilities of parse trees P(T) and choose NP — Det Nominal 20

the most probable one Nominal — Nominal Noun .20

But what we need is Nominal — Noyn 15

T(S)= argmax P(T|S) Verb — book .30

Ts.r.5=yleld(T) Det — the 60

However, if we use Bayes rule and the fact that Noun — dinner 10

P(S,T) = P(T) it is easy to show this is correct Noun — flight 40

All trees T generating sentence S



Training: CYK again
Exactly the same algorithm, but

- boolean-valued array P => probabilities

- setting True for any good split =>
updating the probability if it's greater than the current value

if (tablelij,A] < P(A — BC) x tablelik,B] x table[k,,C]) then
tablelij,Al<— P(A — BC) X tableli,k,B] x table[k,j,C]

Ney, H. (1991). Dynamic programming parsing for context- free grammars in continuous speech recognition. IEEE Transactions on Signal Processing, 39(2), 336-340.

33



CYK: before

let the input be a string I consisting of n characters: a; ... ap.
let the grammar contain r nonterminal symbols Ry ... R, with start symbol R;.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.
for each s =1 to n
for each unit production R, -> as
set P[1,s,v] = true
for each 1| = 2 to n -- Length of span
for each s = 1 to n-1+1 -- Start of span
for each p = 1 to -1 -- Partition of span
for each production R; -> Rp R,
if P[p,s,b] and P[l-p,s+p,c] then set P[l,s,a] = true
if P[n,1,1] is true then
I is member of language
else
I is not member of language

34



CYK: after

let the input be a string I consisting of n characters: a; ... a,.

let the grammar contain r nonterminal symbols R; ... R,, with start symbol R;.
let P[n,n,r] be an |array of real numbers. Initialize all elements of P to
'let back[n,n,r] be an array of backpointing triples.|

for each s =1 to n

for each unit production R, -> ag the probability of the production rule

set Pl1,s,v] =|Pr(R, -> a;) MAX probability of the parse I[s:s+p]
for each 1 = 2 to n -- Length of span MAX orobabilitv of th s +p:s+|
for each s = 1 to n-1+1 -- Start of span proba "yo e parse I[s+p:s+l]

for each p =1 to l-1 -- Partition of /jpan
for each production R; -> Ry R,
prob splitting = Pr(Ra -> Ry, R;) * Plp,s,b] * P[l-p, s+p cl
if| P[p,s,b] > 0 and P[l-p,s+p,c] > 0 and P[l,s,a] < prob_splitting|then
set P[l,s,a] = prob splitting
set backl[l,s,al = <p,b,c>

35



Where do we get probabilities from?

Obtain a treebank and compute production rules applications frequencies

~ Count(x =)  Count(ax — )
P(a =2 B'a) — Z},Count(a & Y) o Count(a)

Also the approaches incrementally updating rules probabilities exist

36



PCFG: discussion

+ Usable way to train grammar parsers using a corpus
Works better than previous approaches
+ The effective parsing algorithms exist

- Independence assumptions are too strong
(still many errors)

- Weak expressiveness:
- itis useful to take ‘connections types’ into account: subject/object
- many rules and regularities are connected with certain words

37
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Head of a phrase

It is important to be able to determine which element (non-terminal symbol) of the
phrase is the main one

It is a discussed and a non-trivial task, though it may seem so. In English it is
well-solved by the rules of the sort:

e [f the last word is tagged POS, return last-word.

e Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,
or JIR.

Else search from left to right for the first child which is an NP.

Else search from right to left for the first child which is a $, ADJP, or PRN.

Else search from right to left for the first child which is a CD.

Else search from right to left for the first child which is a JJ, ]IS, RB or QP.

Else return the last word

Michael Collins’ dissertation

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia. ctp 238

39


http://www.dfki.de/~neumann/dop-seminar/References/collins-thesis.pdf

Why did we talk about that? Lexicalization!

Phrase head elements can serve as a helpful context!

We can set it by appending carefully chosen terminal symbols (and head non-terminal

symbols) to non-terminal ones

Probabilistic Lexicalized CFGs
Charniak’s and Collins’ parsers

Charniak, E. (1997). Statistical parsing with a context-free grammar
and word statistics. In AAAI-97, pp. 598-603. AAAI Press.

Collins, M. (1999). Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania,
Philadelphia.

For more details — Martin, Jurafsky, Collins
books and materials

TOP

S(dumped,VBD)

/\

NP(workers,NNS) VP(dumped,VBD)

| il e

NNS(workers,NNS) VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

| | | T s

workers dumped NNS(sacks,NNS) P(into,P) NP(bin,NN)

| | 2N

sacks into DT(a,DT) NN(bin,NN)

a bin

40
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Quality evaluation

Suppose we have the gold standard for parse trees, let us look at the exact match of
phrases borders and labels:

# of correct constituents in hypothesis parse of s
# of correct constituents in reference parse of s

labeled recall: =

# of correct constituents in hypothesis parse of s
# of total constituents in hypothesis parse of s

labeled precision: =

...that is, as usual, fraction of correctly predicted items among true ones / all predicted
respectively

cross-brackets: cases of the kind
((AB) C) in a “gold standard”
(A (B C)) in prediction

If labels themselves are not important, one can use other evaluation methods

42



h. Tools and data
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Instruments

The outbreak of the Liberal Revolution of 1820 in Lisbon compelled Pedro I's father to return to Portugal in April 1821, leaving him to rule Brazil as regent.

e nltk
o pattern @ [orga"izm"] [me"] [O"""a'] [N"’"be'] NLP by CoreN|

e spaCy, CoreNLP, CleanNLP
(are said to be fast)
e MATE

® SyntaXNet echo 'Bob brought the pizza to lice.'

NP

| syntaxnet/demo.sh

Input: Bob brought the pizza to Alice .
Parse:
brought VBD ROOT

+-- Bob NNP nsubj

+-- pizza NN dobj

[ +-- the DT det

+-- to IN prep

[ +-- Alice NNP pobj

+-- . . punct 44




Data

https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks

Syntax formalism

ouicn LADDY dimail ana Largee vepenaency

English Penn Treebank® Phrase structure

English CCGbanke ;Jr:::::lory categorial

English Prague English Dependency Treebank# Dependency

English Universal Dependencies# Dependency
general public license)

English BLLIP WSJ corpus® Phrase structure

English British Component of the International Corpus of English (ICE-GB)& Phrase structure

English Diachronic Corpus of Present-Day Spoken English (DCPSE)#& Phrase structure

English Lancaster Parsed Corpus# Phrase structure

English Susanne Corpus# Phrase structure Freely available for research

English Christine Corpus# Phrase structure Freely available for research

English Lucy Corpus@ Phrase structure Freely available for research

English Tubingen Treebank of English / Spontaneous Speech (TuBa-E/S)&@ HPSG Freely available for research

English LinGO Redwoods# HPSG ?

Ennlich Multi Traahanka Dhraca strinhira Aviailah lina far .
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https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks

Used and recommended materials

1. Martin-Jurafsky, Chapters 11-13

2. Introduction to Automata Theory, Languages, and Computation
John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman

3. Jarkko Kari, Automata and formal languages, notes

4. [Russian] NpuknagHasa n KOMNbOTEPHAA NMHIBUCTMKA
(noa pen. N.C. Hukonaesa, O.B. MutpenuHon, T.M. JlaHgo)

5. [Russian] BeBegeHue B obwmnm cuHtakeuc. A.I. Tectened.

46


https://web.stanford.edu/~jurafsky/slp3/
http://users.utu.fi/jkari/automata/fullnotes.pdf
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