
Syntax
(only PSG)

Anton Alekseev
Steklov Mathematical Institute in St Petersburg

NRU ITMO, St Petersburg, 2018
anton.m.alexeyev+itmo@gmail.com

http://bit.ly/2hPyEMH

http://bit.ly/2hPyEMH

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

2

Parsing
machine analysis of the text structure, esp. the sentence structure

We’ve all done it at school, and sometimes machines can do it as well

https://www.kakprosto.ru/kak-30136-kak-delat-sintaksicheskiy-razbor-predlozheniya
http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/516044/img1.gif

3

https://www.kakprosto.ru/kak-30136-kak-delat-sintaksicheskiy-razbor-predlozheniya
http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/516044/img1.gif

Motivation
Sentence structure itself is never a goal for practical tasks, but is extremely useful
as a preprocessing step e.g. for:

- facts extraction and opinion mining,
- text summarization,
- machine translation, etc.

https://static-eu.insales.ru/images/products/1/850/61170514/9031_P_open_1_wo_c_1800x1200__1_.jpg
http://papus666.narod.ru/clipart/g/gaek/gaechnkl017.png

https://www.microscope.com/media/catalog/product/cache/2/image/9df78eab33525d08d6e5fb8d27136e95/o/m/o
mano_om136c_monocular_compound_microscope_main_1.png

4

https://static-eu.insales.ru/images/products/1/850/61170514/9031_P_open_1_wo_c_1800x1200__1_.jpg
http://papus666.narod.ru/clipart/g/gaek/gaechnkl017.png
https://www.microscope.com/media/catalog/product/cache/2/image/9df78eab33525d08d6e5fb8d27136e95/o/m/omano_om136c_monocular_compound_microscope_main_1.png
https://www.microscope.com/media/catalog/product/cache/2/image/9df78eab33525d08d6e5fb8d27136e95/o/m/omano_om136c_monocular_compound_microscope_main_1.png

Syntax
grammar subset studying sentences and ways of combining words within a sentence

Main approaches to syntax description

1) dependency grammar
Tesnière, L. 1959. Éléments de syntaxe structurale. Paris: Klincksieck

2) phrase structure grammars
Chomsky, Noam 1957. Syntactic structures. The Hague/Paris: Mouton

3) link grammar
Daniel Sleator and Davy Temperley. 1991. Parsing English with a Link Grammar. Carnegie Mellon University Computer Science technical report, October 1991.

4) hybrid approaches

5

Before we define stuff thoroughly: an example
Is everything OK here?

https://i.imgur.com/ShMtNEy.png

6

https://i.imgur.com/ShMtNEy.png

Before we define stuff thoroughly: an example
Is everything OK here?

Yes! But if we want to say one has LOOKED
with one eye, then the tree should be different

This is called attachment ambiguity
(“dunno where to hang the subtree”)

coordination ambiguity
is widely spread as well:
[old [men and women]] vs [old men] and [women]

https://i.imgur.com/ShMtNEy.png

7

https://i.imgur.com/ShMtNEy.png

Example, discussion
- There may be several parse trees, this is OK

(BTW, there are parsers that yield multiple parse trees
given the text)

- sometimes there is only one ‘true’ parse tree, and this is
evident for us, but not for the machine, because we know
word meanings, context and how this world works in general

- it is also hard thanks to:
- ellipsis (omission of the word),
- context-dependent meanings

(“watch TV”, “how come they got into TV”),
- morphological ambiguity

(“river flow”, “the river can flow”)
http://www.jnanam.net/slade/Trees/colourless_green_ideas.jpg?w=240

8

http://www.jnanam.net/slade/Trees/colourless_green_ideas.jpg?w=240

Where the rules come from
- Experts (weak, expensive)
- Annotated data (great, also expensive)

Data banks, where the sentences are parsed

http://ruscorpora.ru/syntax/2013/ataman_vikhr_11.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.8216&rep=rep1&type=pdf 9

http://ruscorpora.ru/syntax/2013/ataman_vikhr_11.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.8216&rep=rep1&type=pdf

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

10

Phrase structure grammar
Key points

- some words are ‘connected more tightly with
each other’ than other ones

- the words in a sentence can be grouped into
phrases, that ‘behave like a single language
entity’

- phrases can be nested

First formulated by Wilhelm Wundt (1900),
formalized by Noam Chomsky (1956) and by John
Backus (1959; BNF; independently).

11

Illustration
Phrases can be swapped

yet words forming a phrase sometimes can’t

12

Parse tree example
VP - verb phrase
(approx: a verb and dependent PoS)

NP - noun phrase
(approx: a noun is a root)

PP - prepositional phrase
AP - adjective phrase

D (Det) - determinatives: articles, certain pronouns,
quantifiers, numbers, Q-words, etc.
...

https://i.imgur.com/ShMtNEy.png

13

https://i.imgur.com/ShMtNEy.png

Formal grammar rules
Formal grammar can be treated as a set of rules,
which, after a sequence of applications to the initial
symbol (S), we use to ‘generate’ the text

Parse tree in the example could be built ONLY
if the grammar contains this set of rules:

S → NP VP
NP → N
NP → D N
NP → D N PP
VP → V PP
PP → P NP
N → He | dog | eye, V → looked, D → the | one, P → at | with

14

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

15

Definition
Formal grammar (aka context-free grammar)
is a tuple of...

N — a set of nonterminal symbols (e.g., NP, VP, N,...)
Σ — a set of terminal symbols (all symbols but ones in N)
R — a set of production rules of type: A → β ,

where
A — a nonterminal symbol,
β — a string, an element of the set of all possible strings over Σ and N: (Σ ∪ N)∗

S — a special ‘starting’ symbol in N

Then the language defined by this grammar is a set of all strings over Σ, that can be
deduced from S using the production rules: L = {w | w is in Σ ∗ and S ⇒ w}

16

Chomsky Normal Form (CNF)
Any context-free grammar can be converted to the equivalent one (in terms of the
defined language) that would contain production rules that would ‘generate’ not
more than 2 ‘branches’, e.g.:

17

How to parse any CFG
Naive approach: traverse all possible parse trees? :)

Grammars are well studied objects, those who have taken classes on
compilers should be very familiar with ones

Program code is long; one needs very effective algorithms to parse it

Sentences in natural languages are usually shorter (though some
extremes exist), hence the requirements to parsing speed are lower.
We will take a look at probably the simplest algorithm

18

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

19

Cocke-Younger-Kasami algorithm (CYK)
From bottom to top, dynamic programming, the grammar should be in the form of CNG

The idea, first approximation: for the sentence of length N, fill the 3D array with markers
p[l, s, a] determining whether there is a rule that parses the substring a[s:s+l]

20

CYK-algorithm

The input is a sentence of length n
Boolean 3D array P is initialized with False

21

CYK-algorithm

First we traverse the rules of the kind A → β, where β is a terminal symbol,
and set for those βs TRUE for the corresponding rules and length = 1

22

CYK-algorithm

For all substrings set by length l and starting index s

23

CYK-algorithm

...and all possible splits into two substrings we check if there is such a way to parse each of the two
substrings so that their ‘heads’ (here: Rb and Rc) are in the right side of some rule (here: Ra → Rb Rc)

If yes, set the corresponding array element to True.

s:s+p s+p:s+l

Rb→... Rc→...

24

CYK-algorithm

25

CYK-algorithm: discussion
● As in Viterbi algorithms, we can store backpointers and do a backward

pass to recover all possible parse trees

● There may exist several solutions, usually we need just one

● For the analysis we have to ‘denormalize’ CFG back from CNF

● Cubic complexity: O(n3 |G|)

● Complexity for parsing with arbitrary CFGs can be reduced in terms of the ‘big O’,
e.g. using the fast matrix product
Valiant, Leslie G. (1975). "General context-free recognition in less than cubic time". J. Comput. Syst. Sci. 10 (2): 308–314.

26

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

27

BTW: shallow parsing
Sometimes for practical tasks shallow parsing is enough, e.g.
chunking extracting several non-intersecting phrases

E.g. we want to extract noun phrases:

This can even be treated as a sequence learning task

To evaluate all this, we compute precision, recall and f-measure for the selected chunks, taking exact borders
matches + tags matches 28

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

29

Probabilistic Context-Free Grammars (PGFG)
...are a way to choose the best possible parse; we’ll assign probability to each
production rule

N — a set of nonterminal symbols (e.g., NP, VP, N,...)
Σ — a set of terminal symbols (all symbols but ones in N)
R — a set of production rules of type: A → β [p],

where
A — a nonterminal symbol,
β — a string, an element of the set of all possible strings over Σ and N: (Σ ∪ N)∗
p(β|A) — a numbre between 0 and 1, such that Σβ p(β|A) = 1

 S — a special ‘starting’ symbol in N

PCFG is consistent if the sum of probabilities of all possible sentences in the language in concern =1
30

PCFG in action
The probability of the parse tree T for the sentence S is a product of all production
rules that ‘were applied during the generation of the sentence’

also we know that

and P(S|T) = 1, because the parse contains all sentence’s words S, so

31

PCFG in action
This is what it looks like

Having multiplied conditional probabilities we
get probabilities of parse trees P(T) and choose
the most probable one

But what we need is

However, if we use Bayes rule and the fact that
P(S,T) = P(T) it is easy to show this is correct

All trees T generating sentence S 32

Training: CYK again
Exactly the same algorithm, but

- boolean-valued array P => probabilities

- setting True for any good split =>
updating the probability if it’s greater than the current value

Ney, H. (1991). Dynamic programming parsing for context- free grammars in continuous speech recognition. IEEE Transactions on Signal Processing, 39(2), 336–340.
33

CYK: before

34

СYK: after

the probability of the production rule
MAX probability of the parse I[s:s+p]
MAX probability of the parse I[s+p:s+l]

35

Where do we get probabilities from?
Obtain a treebank and compute production rules applications frequencies

Also the approaches incrementally updating rules probabilities exist

36

PCFG: discussion
+ Usable way to train grammar parsers using a corpus
+ Works better than previous approaches
+ The effective parsing algorithms exist

- Independence assumptions are too strong
(still many errors)

- Weak expressiveness:
- it is useful to take ‘connections types’ into account: subject/object
- many rules and regularities are connected with certain words

37

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

38

Head of a phrase
It is important to be able to determine which element (non-terminal symbol) of the
phrase is the main one

It is a discussed and a non-trivial task, though it may seem so. In English it is
well-solved by the rules of the sort:

Michael Collins’ dissertation
Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia. стр 238 39

http://www.dfki.de/~neumann/dop-seminar/References/collins-thesis.pdf

Why did we talk about that? Lexicalization!
Phrase head elements can serve as a helpful context!

We can set it by appending carefully chosen terminal symbols (and head non-terminal
symbols) to non-terminal ones

Probabilistic Lexicalized CFGs
Charniak’s and Collins’ parsers

Charniak, E. (1997). Statistical parsing with a context-free grammar
and word statistics. In AAAI-97, pp. 598–603. AAAI Press.

Collins, M. (1999). Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania,
Philadelphia.

For more details — Martin, Jurafsky, Collins
books and materials

40

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

41

Quality evaluation
Suppose we have the gold standard for parse trees, let us look at the exact match of
phrases borders and labels:

...that is, as usual, fraction of correctly predicted items among true ones / all predicted
respectively

cross-brackets: cases of the kind
((A B) C) in a “gold standard”
(A (B C)) in prediction

If labels themselves are not important, one can use other evaluation methods
42

Plan
1. What is parsing and why we need it
2. Phrase structure grammar

a. Intuition
b. Formal grammars
c. CKY-algorithms
d. *Shallow parsing
e. Probabilistic grammars
f. Probabilistic grammars lexicalization

g. Quality evaluation
h. Tools and data

43

Instruments
● nltk
● pattern
● spaCy, CoreNLP, CleanNLP

(are said to be fast)
● MATE
● SyntaxNet

44

Data
https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks

45

Syntax formalism

https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks

Used and recommended materials
1. Martin-Jurafsky, Chapters 11-13
2. Introduction to Automata Theory, Languages, and Computation

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman
3. Jarkko Kari, Automata and formal languages, notes
4. [Russian] Прикладная и компьютерная лингвистика

(под ред. И.С. Николаева, О.В. Митрениной, Т.М. Ландо)
5. [Russian] Введение в общий синтаксис. Я.Г. Тестелец.

46

https://web.stanford.edu/~jurafsky/slp3/
http://users.utu.fi/jkari/automata/fullnotes.pdf

Syntax

http://bit.ly/2hPyEMH

Anton Alekseev
Steklov Mathematical Institute in St Petersburg

NRU ITMO, St Petersburg, 2018
anton.m.alexeyev+itmo@gmail.com

Thanks for comments and advice go to
Denis Kiryanov and Mikhail Slabodkin

http://bit.ly/2hPyEMH
mailto:anton.m.alexeyev+itmo@gmail.com

