
Text classification
Anton Alekseev
Steklov Mathematical Institute, St Petersburg Department

NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

2

Motivation: roots

http://kencozmo.blogspot.ru/2011/09/chapter-3.html 3

http://kencozmo.blogspot.ru/2011/09/chapter-3.html

Motivation
1. Sentiment analysis: track/check if the users are happy with

the product or not
(optional: + find out which particular feature user [dis]liked)

2. Topic classification: section the news article to be put in

3. Spam detection: predict if letters are unwanted by user based
on those tagged by him/her as spam

4. Incomplete data imputation: predict user’s gender based on text
he/she publishes/likes/skips

5. Many more: authorship attribution, sociodemographic
characteristics, etc...

4

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

5

Classification task
Supervised learning task. Given:

- a set of documents (texts) D = { d1, d2, … dn}
- a set of classes (categories) C = { c1, c2, … ck }
- usually there is a training set -- a subset of D x C,

that is, document-class pairs

Task:

- train a function f: D => C, matching each document with the correct class

6

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

7

Classifier example: Naive Bayes
aka simple Bayes, independent Bayes

is called so thanks to being a straightforward
Bayes theorem application

Approach: learn P(c|d) and choose c with the largest
conditional probability value for every d

Assumption: all words are conditionally independent

8

words in a document

class

Naive Bayes: formulae
Class probability for the set of given
words in a document

p(x) — constant!

...we care about the numerator only

Let’s rewrite it using the chain rule

9

Naive Bayes: formulae
Using the conditional independence assumption, we get

classifier is ready:

the so-called MAP (maximum a posteriori) decision rule 10

Naive Bayes: how to compute this

1. Estimate probabilities using the formula above
2. Compute the value for every class for every new incoming document
3. Choose the class with the largest value

Yes, doing smoothing does make sense here; one can also consider taking

- a share of documents containing the word (binary Naive Bayes) instead of plain word frequencies
- log-frequencies instead of plain word frequencies 11

share of words labeled with Ck in
the training set

fraction of the word xi among all
texts labeled with Ck

Naive Bayes: discussion
- independence assumption

(natural language is not a bag of words)
- weights of long documents differ a great deal

+ robust to unknown words
+ simple and fast
+ is often used as a simple baseline

12

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

13

Machine learning models quality evaluation

We have the data, we have the metric

Splitting into

● train set
● test set

Believing these subsets are ‘sampled from the same distribution’
(otherwise training makes almost no sense)

14
https://jessesw.com/images/Rec_images/Traintest_ex.png

Deadly Sin №1
Test data leaks into train set
(this way we lose generalization
capability and estimates validity)

Deadly Sin №2
Tuning hyperparameters on test set

But how do we tune the parameters? Ideas?

15
DataFest sticker

Machine learning models quality evaluation

1. TRAIN - training model
2. DEV - evaluating quality + analyzing errors + tuning hyperparameters
3. TEST - blind quality evaluation: looking at quality metric ONLY + not too

often, so as not to overfit

TRAIN DEV TEST

16

Machine learning models quality evaluation

Binary classification quality evaluation
Example: spam (positive) or not spam (negative) emails

17

true labels

spam! not spam!

spam! TRUE POSITIVE
we’re happy

FALSE POSITIVE
normal letter falling into a

Spam folder
a tragedy

not
spam!

FALSE NEGATIVE
spam in inbox

not good

TRUE NEGATIVE
we’re happypr

ed
ic

tio
ns

Binary classification quality evaluation

Choose the target class and consider its prediction
a positive case;
Correct prediction — true positive, incorrect — false positive
+ the same for the other class 18

F1-measure -
harmonic mean of

recall and precision

F-measure

Binary classification quality evaluation
Let’s say 1 is a target class

19

1 1 0 0 0 1 0 1

1 0 0 1 0 1 1 1

ground_truth

prediction

TP = 3
FP = 2
TN = 2
FN = 1

Accuracy = (3 + 2) / (3 + 2 + 2 + 1) = 0.625
Precision = 3 / (3 + 2) = 0.6
Recall = 3 / (3 + 1) = 0.75
F1 = 2 * 0.6 * 0.75 / (0.6 + 0.75) = 0.66(6)

Binary classification quality evaluation
accuracy = share of correct hits, is in [0, 1]

- won’t tell us much if samples counts of different classes shares are
imbalanced

precision = a share of truly positive among predicted as positive ones
recall = a share of truly positive that were actually predicted as positive ones

Checking your understanding: if the classifier sets all labels as the target class
(all samples are predicted as positive ones), what are precision and recall?

20

Binary classification quality evaluation
Precision-Recall Curve

we change the parameter that
changes precision and recall and
look at the behaviour of precision
and recall values

(this parameter is usually a
probability threshold in a decision
rule)

21

https://classeval.wordpress.com/introduction/introduction-to-the-precision-recall-plot/

https://classeval.wordpress.com/introduction/introduction-to-the-precision-recall-plot/

Classification quality evaluation: multi-class
= number of classes > 2

1. Accuracy
share of correctly predicted cases

2. Micro-averaging: Precision, Recall, FScore
first we compute TP, FP, …, for every class
and then we compute metrics values, summing all TPs, FPs, etc.

3. Macro-averaging aka “all classes are equally important”: Precision, Recall, FScore
computing Precision, Recall,... for every class,
then averaging (summing and dividing by the number of classes)

22

Classification quality evaluation: multi-class

Label 0

TP = 1, FP = 1
FN = 2, TN = 4

Precision = 0.5
Recall = 0.33

23

1 2 0 2 0 1 0 1

0 2 0 1 2 1 1 2

ground_truth

prediction

Label 1

TP = 1, FP = 2
FN = 2, TN = 3

Precision = 0.33
Recall = 0.33

Label 2

TP = 1, FP = 2
FN = 1, TN = 4

Precision = 0.33
Recall = 0.5

Macro-averaging
Pr = (0.5+0.33+0.33) / 3 = 0.387
R = (0.5+0.33+0.33) / 3 = 0.387
F1 = 2PrR / (Pr + R) = 0.387
Micro-averaging
Pr = (1+1+1) / (1+1+1 + 1+2+2) = 0.375
R = (1+1+1) / (1+1+1 + 1+2+2) = 0.375
F1 = 2PrR / (Pr + R) = 0.375

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

24

Notes on standard text representation approaches
Method #1, Bag-of-words: one hot
~ one-hot-encoding / dummy coding: many interpretable features
“Hush now, baby, baby, don't you cry”

Bag-of-words: word counts (sklearn: CountVectorizer)
counts or relative frequencies instead of one-hot values

Bag-of-words: weird numbers (sklearn: TfIdfVectorizer)
TF-IDF or other estimates of terms importance

25

hush now baby wall do not you oh cry

1 1 2 0 1 1 1 0 1

Notes on standard text representation approaches
By ‘forgetting’ about word order we lose information, however, there is a
simple way to at least try to take word order into account!

Bag-of-ngrams (sklearn vectorizers support this out-of-the-box, btw)
ngram = n terms in a row as a single term

“New York”
“New Deli”
“not cool”
“catch up with”

+ other reasons why word order has to be dealt with
26

BOW: specifics and takeaways

tens/hundreds of thousands of sparse features; curse of
dimensionality may be a problem:

1. have to filter terms and introduce penalties for the most frequent
and rare ones;
implemented in almost any toolbox, e.g. in sklearn;
(including stopwords filtering: “useless/common words”)

2. should choose models working with large number of sparse
features
one can’t simply solve all problems with Random Forest!

3. should always experiment with choosing N in Ngrams and
weights for terms (one-hot/tfidf etc.)

https://twitter.com/stanfordnlp/status/399551909595344896
27

Any ideas
on what this
installation
represents?

BOW: specifics and takeaways

tens/hundreds of thousands of sparse features; curse of
dimensionality may be a problem:

1. have to filter terms and introduce penalties for the most frequent
and rare ones;
implemented in almost any toolbox, e.g. in sklearn;
(including stopwords filtering: “useless/common words”)

2. should choose models working with large number of sparse
features
one can’t simply solve all problems with Random Forest!

3. should always experiment with choosing N in Ngrams and
weights for terms (one-hot/tfidf etc.)

https://twitter.com/stanfordnlp/status/399551909595344896
28

When BoW may not be enough?
● Small data

○ Zipf’s law
○ Rich morphology =>

not too many training samples
○ ...what if we lemmatize? =>

sometimes we can’t neglect morphology

● Short texts
○ same reasons
○ + intuitively: the larger the text the more good

word predictors it has

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Garbage_bag.jpg/1200px-Garbage_bag.jpg

Trash bag // Wikipedia

29

Notes on standard text representation approaches
Method #2 sum word vectors (e.g., word2vec) of all words in the texts
with weights proportional to importance weights (e.g. TF-IDF)

Method #3 concat word vectors (e.g., word2vec) of all words in the texts
into a matrix

30

What if we go beyond word level?
...that is, represent the text as a sequence of encoded
characters (Method #4)
e.g. see: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://i.pinimg.com/originals/20/39/17/203917d3b4cd0fa531801d46a432d272.jpghttps://blogs.technet.microsoft.com/machinelearning/2017/02/13/cloud-scale-text-classification-with-convolutional-neural-networks-on-microsoft-azure/
31

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Representing texts

32

Custom features may also help:
POS counts, text length, weighted average word embeddings, RNN-based embeddings, etc.

Conceptual stuff
In Naive Bayes we were training a data model that would
allow us to generate samples given the class

So we were modeling the data.

However, there is a family of models that are trained to
predict this (exactly what we want classifier to do):

They are focused on determining which features are the best
to separate the classes

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

34

Linear models
Usually they look like this

where f are features
(e.g., bag of ngrams),
and w are the weights we are to find

Training the linear regression so that it would
return the conditional probability of the class
given the data is not really possible :)

35

Logistic regression
Let’s try to fix it by making the outputs

- nonnegative

- lying between 0 and 1

36

Logistic regression: predictions

Can be solved in a way similar
to a linear regression

37

Logistic regression: training
Maximizing conditional probability
of the class (y) given the data (x)

For gradient ascend we need a derivative

38data-based feature counter predicted feature values

Important problem: overfitting
Machine learning models can fit the training set ‘too well’: e.g. features values
that occur only with one class label are a strong signal for the classifier (even if
the number of such cases is not large)!

For example, logistic regression can assign a large weight
to a particular feature wi

However, such cases may be too specific and this may not be a good rule when
using the model in the wild!

“Models fitting too specific cases” usually fail to generalize. This is called
overfitting.

39

Logistic regression: regularization
One way to fight overfitting is regularization: adding extra constraints to the task or
restricting the possible solutions family

L2-regularization
aka shrinkage
aka Tikhonov’s regularization

...doesn’t allow the weights to grow
40

Logistic regression: regularization
One way to fight overfitting is regularization: adding extra constraints to the task or
restricting the possible solutions family

L1-regularization
aka LASSO (least absolute shrinkage and selection operator)

...doesn’t just make the weights smaller but also allows to turn them into zero

41

Logistic regression: discussion
+ training and prediction is fast
+ more robust then naive Bayes and works better with

correlated features

- has to be done: tuning regularization, feature
normalization, feature selection

- probabilities estimates may not reflect the data, see

42

http://www.machinelearning.ru/wiki/images/6/68/voron-ML-Lin.pdf

Linear models: SVM (Support Vector Machine)
Linear models usually build a separating hyperplane:
different classes should be at different sides of it

Now let’s try to build a hyperplane so that the objects with
different labels are at max. distance from it

This should help to generalize and be more confident when
predicting classes

43
Вапник В. Н., Червоненкис А. Я. Теория распознавания образов. — М.: Наука, 1974.
Cortes C., Vapnik V. Support-vector networks // Machine Learning. — 1995. — Vol. 20, no. 3. — Pp. 273–297.

Linear models: SVM
Points of classes c from the set { -1, 1 }:

Separating hyperplane:

two parallel hyperplanes that we can move without
touching the samples in the case of linear
separability:

So we minimize |w|, so that the distance between
them was greater

44

Linear models: SVM
Quadratic programming task

with a few transformations we can reformulate the task like this:

this quadratic programming task has just one solution, which can be
effectively found in the case if hundreds of thousands objects

45

Linear models: SVM
● there is an modification for multiple linearly

inseparable classes

● take a look at the formulae at the previous slide:
the features are used only in the scalar
product

hence we can redefine it; this way we’ll move
objects into the space of higher dimensionality
where they may be linearly separable

this is called the kernel trick

46

SVM, discussion
+ separating hyperplanes with margin usually deliver a more ‘confident’ solution
+ the optimization task has effective solution methods

- not robust to outliers (those that are close to the separation hyperplane)
- choosing the kernel is black magic; common sense doesn’t always work
- when there is no prior belief in linear separability of the classes, one has to

tune parameters

47

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

48

Metric classifiers: kNN
At the core -- compactness hypothesis: objects that are
close to each other in a metric space should have the
same label

k Nearest Neighbours method: no training, a classified
object is given the most popular label among k closest
objects in the train set

The larger the k, the more smooth are the borders
between classes; however, if the k is too large,
underfitting is possible

49ht
tp

://
sc

ik
it-

le
ar

n.
or

g/
st

ab
le

/a
ut

o_
ex

am
pl

es
/n

ei
gh

bo
rs

/p
lo

t_
cl

as
si

fic
at

io
n.

ht
m

l#
sp

hx
-g

lr-
au

to
-e

xa
m

pl
es

-n
ei

gh
bo

rs
-p

lo
t-c

la
ss

ifi
ca

tio
n-

p
y ht

tp
s:

//c
om

ps
ci

ce
nt

er
.ru

/m
ed

ia
/s

lid
es

/n
lp

_2
01

4_
sp

rin
g/

20
14

_0
3_

03
_n

lp
_2

01
4_

sp
rin

g.
pd

f

http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py
http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py
https://compscicenter.ru/media/slides/nlp_2014_spring/2014_03_03_nlp_2014_spring.pdf

kNN: how to improve
One can

- use the order of the neighbours (when sorted by distance)
as a ‘vote weight’ (the closer, the more important is the label vote)

- use neighbours distances to the classified object
(vote weight is set by function, take a look at the Parzen window method)

- filter a set of representative objects in the training set
(predictions are made faster + removing outliers helps)

50

kNN: discussion
+ non-linear, classes samples groups can be of arbitrary

form and shape
+ a natural way to do the multiclass classification

- may be too expensive to store and use for predictions
all/representative training set objects

- depends on the training set too much
- usually unsuitable for large dimensions

51

https://en.wikipedia.org/wiki/Curse_of_dimensionality#Nearest_neighbor_search

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

52

Logical classifiers: decision trees
We build a structure setting the conditions
splitting the data

For every classified object we go through that
structure (tree) checking the conditions on the
way (e.g. “is there a word genome in the
text?”) from top to bottom, taking the label in
the leaf as a result

The samples space is partitioned into the
parallelograms, one label is set to each

53

https://www.slideshare.net/marinasantini1/lecture02-machine-learning

https://www.slideshare.net/marinasantini1/lecture02-machine-learning

Logical classifiers: decision trees
ID3 algorithm
How “impure” the distribution of classes in S is is characterized
by the entropy over shares of the samples of different labels

1. For every feature A and for every possible data partitioning
T by it compute the information gain

2. Split the dataset using the feature and the partitioning with
the MAX IG

3. Do 1-2 recursively with the subsets until there are no more
samples or until IG stops to grow

54

Logical classifiers: decision trees
Classical algorithms: ID3, C4.5, CART, …

A few heuristics to fight with overfitting

E.g. pruning: we replace the subtree with a leaf with the most
frequent label in the former subtree if that doesn’t hurt the
quality of predictions on the dev set

55

Decision trees: discussion
+ easy to interpret
+ don’t have many assumptions on what the solution should look like

- overfit easily
- not that great for large dimensions

56

Plan
1. Motivation
2. Classification task
3. Classifier example: Naive Bayes
4. Classification quality evaluation
5. Classification methods review

a. Linear methods
b. Metric methods
c. Logical methods
d. Ensembles

6. Typical tasks and special cases

57

Machine learning models ensembles: blending

We train at train set, we tune weights at dev, we check quality at test

- if you don’t tune too hard, this helps to overcome overfitting
- main advantage: quick and dirty; the first thing to try

58

train set

1 2 3

dev set test set

1 2 3

dev predictions

1 2 3

test predictions

blend

F
I
N
A
L

training
training

Machine learning models ensembles
Using multiple models for predictions may help

- not to ovefit
- to get a more rich solutions space than of any of the models the

ensemble is composed of

Blending: joining the predictions of multiple models into one

- if we have probabilities, we can take the weighted sum
- weights for the linear combination may be trained + we can even

train a model over predictions (BUT: overfitting alert!)
- if we predict classes, one can take a mode of the predicted labels

59

DecisionTree

kNN

SVM

Machine learning models ensembles: bagging
Bagging (bootstrap aggregating) —
sampling a few datasets from the training set, training
classifiers on the independently

Feature bagging (attribute bagging, random subspace method) —
sampling subsets of features and training classifiers on
such sets independently

The resulting model is a consensus or a weighted vote

This allows for being more confident in predictions and
helps overcome overfitting

60

https://en.wikipedia.org/wiki/Bootstrap_aggregating

Machine learning models ensembles: boosting
The core idea is to use a bunch of weak classifiers
(non-random though) to build a strong one

Usually done like this:

1) incrementally training weak classifiers
2) when adding each of them we increase the

weight of previously wrongly classified samples
3) classifiers are added into the composition with

the weight reflecting the quality they’ve shown

61

Cool demo

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

More stuff one needs to know
- other ways to measure quality, e.g., comparison with random predictions
- feature selection (PMI, DIA, Chi-square, ...)
- how to deal with label-imbalanced datasets
- how to deal with small training data
- tuning hyperparameters methods

(grid search, random search, bayesian optimization,
gradient-based optimization)

- ...

62

Important special cases
Sentiment analysis: building ‘sentimental words’ vocabularies, e.g.

- semi-automatic (given initial sentimental seed words)
- custom vocabulary building, e.g. for specific domains

Topic classification:

- topic hierarchy building; the less supervision there is, the better
- dealing with the case where there is no true topic in label list yet

63

Tools and instruments
Models zoos to give each a try:

- Weka (GUI)
- Scikit-Learn
- Mallet

Text classifiers can be implemented using:
nltk, spaCy, H2O, mllib, Vowpal Wabbit, BigARTM, …

Standard datasets for English:

- 20 Newsgroups (18k posts; 20 topics)
- Reuters Newswire Topic Classification (Reuters-21578; topical categories)
- IMDB Movie Review Sentiment Classification (stanford; sentiment)
- News Group Movie Review Sentiment Classification (cornell; sentiment)

Datasets are also many, any colour you like
64

https://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/
http://mallet.cs.umass.edu/classification.php
https://archive.ics.uci.edu/ml/datasets.html?format=&task=cla&att=&area=&numAtt=&numIns=&type=text&sort=nameUp&view=table

Used/recommended literature

1. Yandex Data School course on machine learning + similar lecture
notes: this

2. The Elements of Statistical Learning and other classical books on
machine learning (classification is everywhere)

3. Martin/Jurafsky, Chapters 6-7 in Ed. 3
4. Intro into IR (NB, kNN, Rocchio, SVM,...)
5. Wikipedia
6. CSC lectures, 2014 [Russian]

65

https://yandexdataschool.ru/edu-process/courses/machine-learning
http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~jurafsky/slp3/
https://nlp.stanford.edu/IR-book/
https://compscicenter.ru/media/slides/nlp_2014_spring/2014_03_03_nlp_2014_spring.pdf

Text classification
Anton Alekseev
Steklov Mathematical Institute in St Petersburg

NRU ITMO, St Petersburg, 2018
anton.m.alexeyev+itmo@gmail.com

This time thanks go to Denis Kiryanov, Semyon Danilov, Viktor Evstratov

