
Strings, distances,
text representations
Anton Alekseev, Steklov Mathematical Institute in St Petersburg
NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Motivation
The voice from the bloody enterprise:
If you can avoid ML, please do avoid it!

Standard algorithms on strings, automata, etc.
are unsung NLP and Data Science heroes

What is also important: they are widely used
for data preparation and handcrafted
features development

2

String distances/metrics: why discuss this?
Tasks examples from real life:

1. Given a list of companies names extracted from texts automatically, put
different spellings of the same organization into one cluster without any
other external companies database available.

2. People often make orthographic errors and misprints on the web. Given
gold standard dictionary and errors stats, we can easily program a simple
but powerful approach to spelling check/correction using only string
distances and basic statistics.

3. More ideas?
3

String metrics
We believe there are no ‘shifts’ between strings:
Hamming distance = counting ‘replacements’

Invented for counting the number of positional mismatches in binary codes.

In our case -- characters.

R i c h a r d

r i c h e r d

H a m m i n g

H a m m m i n g

4

String metrics
Jaro similarity (1989)

m - a number of matching characters.
matching = positions differ by not more
than

t - half the number of all matching
symbols, where the letters are in the
wrong order

B A E N X I E

B A N K S E Y

m = 4
t = 0
d = 0.71

5Here equals to 2

String metrics
Jaro-Winkler distance (1990)

l - length of the prefices that match exactly
(a maximum of 4)
p - scaling coefficient
(usually from 0 to 0.25);
rule of thumb -- approx. 0.1

Was used for approximate last names matching
for the purposes of the US population census

B A E N X I E

B A N K S E Y

dj = 0.71

dw = dj + 2 * 0.1 * (1 - dj) = 0.768

6

String metrics
Shifts are possible, though not numerous:
Levenshtein distance

The minimum number of operations required to
transform one string into the other: insertions,
deletions, substitutions.

To compute Levenshtein distance one has to solve
a dynamic programming problem

p о n е j е

о l е j е k

poneje - DEL
oneje - INS
onejek - SUB
olejek

d = 3

7

Levenshtein distance: how to compute
Wagner–Fischer algorithm

Solving the task for smaller prefices and
then reusing the results for larger ones until
we get the solution for the original strings.

Initially, all empty strings have distance 0
d(0,0) = 0

B A R T O L D

0

B

A

R

O

N

8

Levenshtein distance: how to compute
Zero for empty strings
d(0,0) = 0

Distance between empty one and a
non-empty one
d(0,j) = j, d(i,0) = i

B A R T O L D

0 1 2 3 4 5 6 7

B 1

A 2

R 3

O 4

N 5

9

Levenshtein distance: how to compute
Empty strings are equal
d(0,0) = 0

Between empty and non-empty strings
d(0,j) = j, d(i,0) = i

General case d(i, j)
if last letters match
= d(i-1, j-1)
If they don’t - one + the minimum of
= d(i -1, j) - DEL (letter removal)
= d(i, j - 1) - INS (letter insertion)
= d(i-1, j-1) - SUB (letter substitution)

B A R T O L D

0 1 2 3 4 5 6 7

B 1 0 1 2 3 4 5 6

A 2 1 0 1 2 3 4 5

R 3 2 1 0 1 2 3 4

O 4 3 2 1 1 1 2 3

N 5 4 3 2 2 2 2 3

10

Modifications and applications
● Damerau-Levenshtein distance: adding the possibility

to swap neighbouring characters
(Damerau’s idea: most typos are of wrong-order-of-letters type)

● One could introduce different penalties for operations
DEL, INS, SUP and sum them up instead of 1-s
when computing Levenshtein distance

11

String metrics
If ‘modifications’ to the text are numerous but it still makes sense to try to match it,
we should try Longest Common Subsequence (LCS)

LCS = 4

О О О _ А R G О _ _ _

А _ R _ G _ О _ L L C

12

LCS: how to compute
Similar story
d(0, 0) = 0
however
d(0, j) = d(i, 0) = 0

General case:
if last letters match
d(i, j) = d(i -1, j - 1) + 1

If they don’t, we take maximum of
d(i - 1, j) и d(i, j - 1)

B _ A T M E N

0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0

A 0 0 0 1 1 1 1 1

M 0 0 0 1 1 2 2 2

E 0 0 0 1 1 2 3 3

N 0 0 0 1 1 2 3 4

13

The Family
All string metrics discussed earlier are called edit distances, they employ:
insertion, substitution, transpositions and deletions

Each is best for certain problems, however sometimes they are unsuitable for
computationally intensive tasks due to being too slow, e.g. for ad-hoc similar
strings search

14

String metrics
Bag-of-ngrams is a weak attempt to take word order into account
Jaccard distance for character n-grams
(any other set distance may also be suitable)

О О О _ R O G A _ I _ K O

R O G A _ & _ K O _ L L C

If you don’t count duplicates (though it may be useful)
For unigrams: 6 / (7 + 9 - 6)
For bigrams: ?
For trigrams: 4 / (11 + 11 - 4) 15

BTW: N-gram indices
We can construct the inverted index to be able to retrieve strings with
maximum number of n-grams common with the query!

Then this search results set can be ranked by a more complex and
computationally hard metric (e.g. Levenshtein distance).

^ООО

RОGА

_КО$

О_RО

ООО_ROGA_I_КО

ООО_RОGА_I_КО

ООО_RОGА_I_КО

ООО_RОGА_I_КО

РОGА_&_КО_LLC

КОКОКО_&_КО

ООО_RОКОКО_&_КО

ООО_RОКОКО_&_КО
16

Implementations
Python

nltk.metrics.distance
python-Levenshtein
Jellyfish! (+ has soundex!)
...

+ Lucene (Java) has NgramIndex

(I suggest you do not reinvent the wheel for production code!)

17

https://cdn.dribbble.com/users/53712/screenshots/964040/untitled-1.gif

http://www.nltk.org/_modules/nltk/metrics/distance.html
https://pypi.python.org/pypi/jellyfish

Do we have any time?

18

Notes on standard text representation approaches
Method #1, Bag-of-words: one hot
~ one-hot-encoding / dummy coding: many interpretable features
“Hush now, baby, baby, don't you cry”

Bag-of-words: word counts (sklearn: CountVectorizer)
counts or relative frequencies instead of one-hot values

Bag-of-words: weird numbers (sklearn: TfIdfVectorizer)
TF-IDF or other estimates of terms importance

19

hush now baby wall do not you oh cry

1 1 2 0 1 1 1 0 1

REMINDER!

Notes on standard text representation approaches
By ‘forgetting’ about word order we lose information, however, there is a
simple way to at least try to take word order into account!

Bag-of-ngrams (sklearn vectorizers support this out-of-the-box, btw)
ngram = n terms in a row as a single term

“New York”
“New Deli”
“not cool”
“catch up with”

+ other reasons why word order has to be dealt with
20

REMINDER!

Notes on standard text representation approaches
Method #2 sum word vectors (e.g., word2vec) of all words in the texts
with weights proportional to importance weights (e.g. TF-IDF)

Method #3 concat word vectors (e.g., word2vec) of all words in the texts
into a matrix

21

REMINDER!

What if we go beyond word level?
...that is, represent the text as a sequence of encoded
characters (Method #4)
e.g. see: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://i.pinimg.com/originals/20/39/17/203917d3b4cd0fa531801d46a432d272.jpghttps://blogs.technet.microsoft.com/machinelearning/2017/02/13/cloud-scale-text-classification-with-convolutional-neural-networks-on-microsoft-azure/
22

REMINDER!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Strings, distances,
text representations
Anton Alekseev, Steklov Mathematical Institute in St Petersburg
NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Extra topic: regular expressions

24

If we know something else about our strings
E.g. the substring it contains or its specific format:
phone number, email address, etc.

25

Be careful!
An [arguably] elegant weapon
for an [arguably] more civilized age!

Once you master it, you want to use
it everywhere, however

- not suitable for some tasks
(don’t parse XML with regex),

- requires elegance and support
for using in production
environment

26

https://docs.google.com/file/d/0BzcDvPGOynTqaVNzTzFJSXFwNzQ/preview
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

RegEx in Everyday Life
Yet sometimes it is better to use regex as a simple solution for NLP tasks

- named entities extraction
- text classification
- grep (instead of using some information retrieval engine!)
- ...

27

RegEx: characters types
Setting a regex means setting a finite automata firing ‘success’ at certain strings

. Any character but \n

\d Digit

\D Not a digit

\w Letter, digit, _

\W Not a letter or digit or _

\s Whitespace char

\S Not a whitespace char

\b Word bound

\B Not a word bound

^ $ The beginning and the end of the string

Each regex sets a language:

… - any 3-char strings
\d\d\d - any 3-digit ‘number’ (may start with 0)
921\s-\s\d\d\d\s-\s - phone numbers of certain format

But how do we use full stop as a full stop? Escaping!

Hello.\s - “Hello! ”, “Hello. ”, “Hellof ”
Hello\.\s - just “Hello. ”

28

Regular expressions: repetitions and variations
* ‘Kleene star’,

repetition of the previous character 0+ times

? Zero or one characters

+ Repetition, at least one time

{2} Repetition, two times

{1,3} Repetition from 1 to 3 times

{2,} Repetition more that 1 time

[A-Za-z0-9шыж] Any character listed inbraces

[^xyz] Neither

ма(ма|ть) One of the groups separated with |

[whatever]*? ? after repetition - “greedy” search
29

Regular expressions: tips and tricks
- Reuse! If possible
- If in doubs -- google it + write tests
- Put some regex cheatsheets on the office’s wall
- Regex have dialects: POSIX, PCRE

choose wisely!
- Always compile regular expressions that are to be later

used multiple times (e.g. in a loop)!

- Regex are learnt only in practice, so consider taking some
practical exercises. For example, this online course
https://regexone.com/

30

https://regexone.com/

