Language modeling

Lectures: Anton Alekseev, Steklov Mathematical Institute in St Petersburg
NRU ITMO, St Petersburg, 2019

I love myse@/‘\

http://utdallas:edu/~rahul.jadhav/

Motivation

I

In many tasks one has to estimate whether the text is ‘natural’ or ‘comprehensible’.
Sometimes a clever way to estimate the word sequence probability is enough

prem’yer
lMocTaHoBKa 3ana4v
- Y nonb3ogaTenw eCTb NoucKoeasn nOTpeﬁHOCTb e N " "
(information need) ‘ Actually Dmitriy said:

» MNorpebHocTb BoNee nnu meree ToOHHO
BbIPAXKAETCA 3aNPOCOM ——

» 3anpoc KCTaTu #norTpebHocTsL
» [JOKYMEHTOM Ha3bIBAETCH HEKOTOPAs eanHuua

noncx pesynuraraof a launch’, PM emphasized poisk po patentam
' WAT?!

ab3ay TEKCTa UNN KOANEKUUA CTPaHuL (Hanpumep

NaTenT) =
» [lokymeHTol 06pa3yoT kopnyc naprlmer
» 3apayva MH(MOPMAUMOHHOr0 NOUCKA: HAWTN B
prgestovniua [1)/Cica MOAYEPKHYT ~ patent search, for
» nnm xots 6wt no HbIE 3anpocy
rnpembe
L example

https://youtu.be/APcwsxUpGrQ?t=1m38s 2

I must admit it was kinda hard to find a good example of lousy generated English subtitles

https://youtu.be/APcwsxUpGrQ?t=1m38s

Motivation

Speech recognition / machine translation / spelling correction /
augmentative communication

e.g.: having generated several possible decodings of the phrase, one
has to choose ‘the most probable’ (from the language’s point of view)

Information retrieval
ranking: for every document d we build ‘its language model’ and sort

all documents by P(q|d) (where q is a query)

Fun! Text generators, imitating the provided text collection’s style

Plan

Intuition
N-gram modeling
Language models quality evaluation

Zeros and smoothing
a. Kneser-Ney smoothing

A

- Libraries
- Datasets

Intuition

e Language model allows us to estimate the probability of any
sequence of words (alternative formulation: to estimate the probability
of the next word)

e How to estimate the probability of
‘Everything was in confusion in the Oblonskys' house...’?

e Let us turn to conditional probability

Intuition: total recall

» Conditional probability

P(Y|X) = P;))((),(;’) = P(X, Y) = PUY|X)PIX)

» Chain rule for greater number of variables:
P(x1X5...Xn) = P(Xn|X1...Xpn_1)...p(X2|X1)P(X1)
» So can we compute it all easily?

Count(x...Xj_1X;)

* Here and further Count(...) is the same as C(...) n ¢(...)

Intuition: total recall

» Conditional probability

PYIX) = P;(a)((),())q =+PX; Y] = P{Y|X)P(X)

» Chain rule for greater number of variables:
P(x1X2..Xn) = P(Xn|X1...Xn—-1)...p(X2|X1)pP(X1)
» SO0 can we compute it all easily?

Count(xy...Xj_1X;)

PLXG 1%l q)) = Count(xi...Xj_1)

P(happy families are all) = P(all | happy families are) x
xP(are|happy families)xP(families|happy)xP(happy)

Intuition: total recall

» Conditional probability

PLYIX) = PI(D)((),(;/) = P(X, X)) = P(Y|X)PIX)

» Chain rule for greater number of variables:
P(x1X3...Xn) = P(Xp|X1..Xn—1)...p(X2|X1)pP(X1)
» So can we compute it all easily?

Count(xy...Xj_1X;)

POGG . X%6_q) = Count(xy...Xj_1)

(nope! long chains are rare events!)

What do we do?

» Assumption is here to help: text satisfies the
Markov property

P(x;i|x1...xj_1) = P(Xxj|x; — K...Xj_1)

...which means that current event depends on not
more than on K preceding ones
» Examples:
» K =0 (unigram model)

P(happy families are all) =

P(all) x P(are) x P(families) x P(happy)
» K=1 (bigram model)

P(happy families are all) = P(all | are) x
xP(are | families) x P(families | happy) x P(happy)

Plan

2. N-gram modeling

3. Language models quality evaluation

4. Zeros and smoothing
a. Kneser-Ney smoothing

- Libraries
- Datasets

10

N-gram model
» Model:

n

P(x1,..Xn) = | [P(XiIXj_n1--Xi—1)

i=1
one has to add N — 1 terms «begin» ~and «end» $
from both sides (padding)

» We can estimate the probability like that

Count(Xj_p41---Xji_1X;)

P(x;|x;_ WXim) =
(XilXi-N1--Xi1) Count(X;_n41---Xi—1)

>
P(X,’lX,’_l) = Count(Xi,Xil/é.OU”t(Xil)
» E.g. for bigrams:

P(hello,i,love,you) =

= P(hello|™)P(i|hello)P(love|i)P(you|love)P($|you) "

Plan

2—N-grarm-rrodelng
3. Language models quality evaluation

4. Zeros and smoothing
a. Kneser-Ney smoothing

- Libraries
- Datasets

12

Quality evaluation techniques

Extrinsic

Checking quality by inducing the model into a bigger useful task

(machine translation, spelling correction, ...).

If the target metric (where the money is: translators work time, editor’s time, clicks
count, earned money, etc.) goes up, the model has become better

Intrinsic

Evaluationforthepoor we need estimates when extrinsic evaluation is too expensive
or when one doesn’t want the results to be related to some specific application (if the
model is universal to certain extent); also a metric that shows us how ‘good’ the model
is

13

Quality evaluation techniques

Extrinsic NO t hi

Checking qualltyﬁo gghéll‘n@el into a bigger useful task

(machine translation, sp ghﬁ' ction, ...).

If the target metric (where the moneﬁ{){r@f tors work time, editor’s time, clicks
count, earned money, etc.) goes up, the mode become better

Intrinsic

' when we need estimates when extrinsic evaluation is too
expensive or when one doesn’t want the results to be related to some specific
application (if the model is universal to certain extent); also a metric that shows us
how ‘good’ the model is

14

R

\
WDEF
uality evaluation

We have the data, we have the metric

We split the data into

e train set (for tuning models) and
e test set (for trained models evaluation)

We have to believe that train and test set data samples are from “the same distribution”
(otherwise we won’t be able to train anything useful)

L Training Set
Original Data

e -

https://jessesw.com/images/Rec_images/Traintest_ex.png

15

\
WDEF
R uality evaluation

Deadly Sin Ne1

Test data leaks into train set
(this way we lose generalization
capability and estimates validity)

Deadly Sin Ne2
Tuning hyperparameters on test set

But how do we tune the parameters? Ideas?

MAKE TEST
TRAIN AGAIN!

DataFest sticker

16

\
WDER"
RYQuality evaluation: data splitting

TRAIN DEV TEST

1. TRAIN - training model

2. DEV - evaluating quality + analyzing errors + tuning hyperparameters

3. TEST - blind quality evaluation: looking at quality metric ONLY + not too
often, so as not to overfit

Model quality evaluation

» The larger the probability of the test text, the closer
the model is to life

» Perplexity — inverse probability of the text
normalized by words sequence length

PP(W) — P(Xl...XN)_ﬁ = ,</P(X1-1--XN) N

1
— N
\/H;V:l P(X;[X1...Xj_1)
It is evident that less is better.

» To those who know some information theory, the
formula may seem familiar:

N . .
PP(W) = P(X1..Xp) N = e~ Zi=1 109 P(Xi|x1..xi_y) .

Quality evaluation: example

Training on 38M tokens
Testing on 1.5M
Dataset: Wall Street Journal

1-gram 2-gram

Perplexity 962 170

from Martin/Jurafsky

3-gram

109

19

Plan

5 N o
0 ol ! et
4. Zeros and smoothing

a. Kneser-Ney smoothing

- Libraries
- Datasets

20

Generalization capability discussion

e There is no such perfect corpus where all possible n-grams
occur at least once!

e The model we have described returns P(x,...) = 0 when run on the text
that contains at least one ngram that was not present in train set

e Evident enough, the model must generalize (and not just encode with
non-zeros what was present in the train set)

a very natural solution is to convert zeros to small values

e Also: words we haven’t met before (OOV = out of vocabulary) can be
replaced with some universal substitutes, e.g.
<UNKNOWN>/part-of-speech’/frequential bucket’

21

Laplacian smoothing
(add-one smoothing)

» Let us imagine that all n-grams in concern occur in
the text one more time. Then we can re-estimate
the probabilities like that (bigrams example)

Count(w;,w;_;) +1
Count(wj) +V

b)

P(wilwi_,) =

where V would save probabilities from not being
equal to 1 when summed. What does it equal to?

22

Laplacian smoothing
(add-one smoothing)

» SO,
oy Count(w,wi_q) +1
PG Count(w;) + V

» |If we sum over w;, we'll see that V should be the
cardinality of unigrams set, otherwise P couldn’t be

called probability.

» Doesn’t work well
(to much useful weight is transferred to zeros!)

» The Fix for the poor:

Count(wj,w;_,) + «
Count(w;) + aV

P(wjlw;_,) =

23

Backoff and interpolation

» No occurrences of «<somewhat young specialist»,
yet a few «young specialist» bigrams (if none —
unigram «specialist»)

» One can use probabilities of smaller n ngrams for
computing estimates of probabilities for target ones
with zero counts. This is called backoff.

» Every n-gram probability can be treated as a
weighed sum of probabilities of ngrams it contains:
n-l-grams, n-2-grams, etc.This is called
interpolation.

P(wilwi_ow;_1) = XaP(W;|W_oW;_1)+A1P(W;|w;_1)+XoP(W;)

N
Z/\,’ =
i=0

A weights are tuned on the separate held out dev
set, may depend on different contexts.

Kneser-Ney smoothing: idea Ne1

- choose bigrams, counts of which equal to Bigram count in Bigram count in
k in the train set training set heldout set

- look at their counts in the held out set 0 0.0000270
1 0.448
We’'ll see that difference is ~ constant! 2 125
. . 3 224
(excluding rare n-grams in both sets) 4 323
5 421
The intuition is that since we have good estimates already for the very high counts,
a small discount d won'’t affect therﬁ much. It will mainly nZodify the srrﬁallgr counts, 6 523
for which we don’t necessarily trust the estimate anyway 7 621
8 7.21
Hence let us remember the shift d = 0.75 for 9 8.26

all the n-grams or 0.75 for 2...9 and 0.5 for 1

Gale, W. A. and Church, K. W. (1994). What is wrong with adding one?. In Oostdijk, N. and de Haan, P. (Eds.), Corpus-Based Research into Language, pp. 189— 198. Rodopi

25

Kneser-Ney smoothing: idea Ne1

discounted bigram

p cw,_,w,)—d

(w, lw,_,)=

AbsoluteDiscounting

c(w,_;)

d - absolute discount

Interpolation weight

+ A’(M{i—l)YP(w)

-

unigram

26

Kneser-Ney smoothing: idea Ne2

discounted bigram Interpolation weight
c(w,_,w,)—d '
P AbsoluteDiscounting (Wi |wi—1) = —— ' A’(Wi—l)P (W)
c(w,,) N
unigram

e Why should we interpolate? Which n-grams are rare guests?

e “Despite he begged for 7
“stockings”? “Lanka”? -- different yet equally frequent

e Idea: the larger the cardinality of set of n-grams that contain the word, the more
useful for interpolation this word is

e Intuition: should we consider ‘Francisco’ as a filler for this particular ‘gap’ if it usually
goes only after the word ‘San’?

Kneser-Ney smoothing: idea Ne2

e Idea: the larger the cardinality of set of n-grams containing the word,
the more useful for interpolation this word (hopefully) is

‘{wl._1 c(w,_,w)> O}‘

{w.w)c(w,,w,)> 0}

Foonrmuarion (W) =

Kneser, R. and Ney, H. (1995). Improved backing-off for M-gram language modeling. In ICASSP-95, Vol. 1, pp. 181-184.

28

Kneser-Ney smoothing: final formula

max(C(w;_yw;) —d,0)
C(W,'_l)

Lambda helps to preserve properties of probabilities distributing the
‘weight’ between ngrams correctly

Pen(wilwi-1) = + A (Wi—1) PcCONTINUATION (Wi)

d
A 'i—1) = Iy i—1W
(w 1) Z“,C(W,-_IV)HW C(W]W) >0}|
There is a recursive formula for ngrams for any n
(see Martin-Jurafsky, Chapter 4)

29

Summary: which is the best?

Philip Koehn’s slides

See the literature

Evaluation

Evaluation of smoothing methods:

Perplexity for language models trained on the Europarl corpus

Smoothing method bigram | trigram | 4-gram
Good-Turing 96.2 62.9 59.9
Witten-Bell 97.1 63.8 60.4
Modified Kneser-Ney 95.4 61.6 58.6
Interpolated Modified Kneser-Ney 94.5 59.3 54.0

30

http://www.statmt.org/book/slides/07-language-models.pdf

Libraries
Datasets

31

Tools

nitk has some LM-related code (nltk.models)

Here’s what Moses can use (open source SMT engine)

Language Models in Moses
The language model should be trained on a corpus that is suitable to the domain. If the
although using additional training data is often beneficial.

)Our decoder works with the following language models:

—a_Jgae SRI language modeling toolkit, which is freely available.
¢ the IRST language modeling toolkit, which is freely available and open source.
e the RandLM language modeling toolkit, which is freely available and open source.
s _Jpe KenlM language modeling toolkit, which is included in Moses by default.
* the DALM language modeling toolkit, which is freely available and open source.
¢ the OxLM language modeling toolkit, which is freely available and open source.
e the NPLM language modeling toolkit, which is freely available and open source.

32

Datasets

e *Huge unlabeled texts collection for your s i e s B
. AOANCTHIN 1938 82 40

Sp@lelC task foAMC T 1939 75 29
tiOAMCTbIPJ 1940 125 40

e Datasets for tasks that use LM, e.g. WMT Rt s 8 h
AOANCTHIN 1943 11 8

® Goog|e NGrams HOAMC T 1944 25 11
vv1om4c’rbuj 1945 42 20

e National corpora (e.g. HKPA), OpenCorpora slopitins e A
AOANCTHIN 1948 103 55

y - File format: Each of the files below is compressed tab-separated data. In
actorbl CHOBOdJOpM 1 CrnoBoco4eTaHn Version 2 each line has the following format:

Bbl MOXeTe ckayaTb apXvBbl C TEKCTOBLIMU haiinamu, coaepXalyumMm 4acTot
Mpu noacyéTe yumuTbiBancs peructp Byks, a Takke 3HaKu NpenuHaHus. ngram TAB year TAB match count TAB volume count NEWLINE

Obwui 06bE — 192689044 2
EERERARCRE HRECHE As an example, here are the 3,000,000th and 3,000,001st lines from the a file

CroBothOpMbI | zip-apxue (7 ™ **7 T = mm- T annl ~f tha English 1-grams (googlebooks-eng-all-1gram-20120701-a.9z):
rpav | zipapus (1ACTOTHbBIE CMNCKU

cumvallate 1978 335 91

3-rpamMMel Zip-apXuB (Tun n-rpammb: VU&T peructpa: TunTokeHoB: cymvallate 1979 261 91

4-rpammbl Zip-apxuB (© sce ® Bce ® Bce

5-rpaMMbl zip-apxug (' YHrpammel (1 cnoso) CyHaToM TonbKo cnosa line tells us that in 1978, the word "circumvallate" (which means
6-rpammbl Sl Emes) b retoneocnosa d with a rampart or other fortification", in case you were wondering)

® Tpurpammbl (3 crosa)

| 335 times overall, in 91 distinct books of our sample.

LM lectures takeaways

e We have discussed machine learning models evaluation

e We've learnt how to estimate word sequence probabilities
using a practical mainstream method

34

Sources and recommendations

Slides are heavily based on Jurafsky/Martin book and
Daniel Jurafsky’s course slides + a few peeks at P. Braslavsky’s
course were taken

Recommended:

- Martin-Jurafsky, edition 3, chapter 4
- “Statistical Machine Translation” Philip Koehn

35

Language modeling

Lectures: Anton Alekseev, Steklov Mathematical Institute in St Petersburg
NRU ITMO, St Petersburg, 2019

