Markov models,
information theory and
why we care about it all

Anton Alekseev,
Steklov Mathematical Institute in St Petersburg NRU ITMO,

NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com



Plan for today: theory and applications

1. Markov chains
a. Language models
b. Keywords extraction and other applications

2. Elements of information theory
a. Information
i. Collocations extraction
ii. One weird trick to estimate sentiment
b. Entropy
i.  Connection between entropy and perplexity



Markov property

N-gram models we discussed earlier actually are Markov models

Markov property: conditional distribution of the next state of a
stochastic process depends only on current state

]P(Xn+1 = ":n+1 | Xp, = in7Xn—1 =tn-1,-- -aXO = 7:0) = lP)(-Xn+1 = in-}-l | Xp = in)

The process with discrete time (or a sequence of random events),
that has this property is called a Markov chain

A simple and a well-studied probabilistic model suitable for many
tasks




Markov chain

The model is entirely set by the stochastic matrix = transitions
probabilities matrix

Example. Events: vowel (v), consonant (c), whitespace/punctuation (s)
(probabilities are set at random, consider the estimation an exergigg);

v c s
_ ' 0.2 0.5 0.3

trans - c 0.45 035 0.2
s 0.6 0.4 0.0

DEMO: ugly self-promotion: http://antonalexeev.hop.ru/markov/index.html



http://antonalexeev.hop.ru/markov/index.html

Markov chains

» So — Markov chain as a process is set by the matrix
of transitions probabilities and probabilities of initial
states

(0)

r= P, ..o

n
Ptrans = {Pisj, I,J € 1: nazpi—ﬂ' = 1Vi}

j=1
» Probability of a trajectory
of length one x;

P = Pj
of length two x; — X;
p = p(x;)p(Xj|Xj) = miP;;
of length three x; — x; — xi

p = p(X;)P(X;|x;))p(Xk|Xi, Xj) = p(X;)P(Xj|X;)p(Xk|X;) = miP;;P;



Markov chains

» Evident enough, probability of trajectory of length n
Is computed like that

|steps|

P(Xa, ..., Xz) = Ta H Pstepsii),steps|i+1), Steps = (a, ..., 2)
i=2

» It is easy to prove that the vector of probabilities of
the process to be in certain states at m—th step can
be computed like that



Markov chains: the [limit

One can demonstrate that if Ptraps jj = pij > 0, there
exist a single asymptotic distribution

BT m
P=lim 7Pians,

m-—oo

and

ﬁ = ﬁPtrans,Zﬁi =1

Such distribution is called the stationary one.



Stationary distribution: interpretation

Suppose we are watching random [web] surfer, who moves from state to
state eternally, making decisions where to glide using the distribution of
states in the current row

~ 7z B
=<4 w/ 0

http://slideplayer.com/slide/8080871/

Then each value in the vector of stationary distribution is the fraction of
total time spent in the corresponding state



Applicati
jon
example Ne1 (previo

, We can est'\mate the
COUﬂt(Xi,N_\,l...Xi,lXi)
Xi-1)

P(Xi\xi/N+1~~~Xi—Qﬁ CountXiN"
| 4
P(xi\xi,l) = Count(x,-,xi,l)Count(xH)

. E.g.for pigrams:
P(hello,i,love,you) =
lo)P(love\i)P(you\love)P(S\you)

= P(hello\")P(i\hel



Application example Ne2: PageRank

The ‘value’ of the web page is defined by

e the ‘value’ of the pages that refer to it,
e a number of pages those pages refer to

(less = better)

Let L;; = 1 if webpage j links to webpage 7 (written j — ), and
Li; = 0 otherwise

Also let m; = 3 I'_ | Lg;, the total number of webpages that j
links to

First we define something that's almost PageRank, but not quite,

because it's broken. The BrokenRank p; of webpage i is
Pj il
0 = L .
ia Z m;j Z m)-p]
j= §=1

http://www.stat.cmu.edu/~ryantibs/datamining/lectures/03-pr.pdf
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Application example Ne2: PageRank

Written in matrix notation,

yuil Lll Ll'l Lln
P2 Loy Lo Loy
p= L=
Pn Lnl Ln’.) cae Lnn
my 0 0
0 mo 0
M =
0 0 . M,

Dimensions: pisn x 1, L and M are n X n

Now re-express definition on the previous page: the BrokenRank
vector p is defined as p= LM~ !p

Does that remind us of anything? Yep, stationary distribution!

11



Application example Ne2: PageRank

1/m; ifi—j

P(go from i to ) =
(g ) {O otherwise

Cool!

1. set the probabilities as above,

2. compute the stationary distribution,
3. use it as a quality/value measure,
4. 777?777

5. PROFIT

Or not?
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Application example Ne2: PageRank

1/m; if1 7
P(go from i to j‘)={ /i T

0 otherwise

Cool!

1. set the probabilities as above,
2. compute the stationary dist~
5. PROF

13



Application example Ne2: PageRank

PageRank is given by a small modification of BrokenRank:

- 2 Lii P
Pi=1nd+d§%l{j~ N\\A’.\q{. /.\
B ~0

where () < d < 1 is a constant (apparently Google uses d = ().85) \ .
In matrix notation, this is _
T, <« Jumping out of loop

p=(—E+ dL:U-l)p,

n

Which means that once in a while, e.g. 15
times out of 100, we allow our surfer to jump Pl froint g {g:g;" Fdpm ift;"?
to a completely random page

Actually Google owe their success to a completely different algorithm https://archive.google.com/pigeonrank/



https://archive.google.com/pigeonrank/

Application example Ne3: PageRank (TextRank)

H . T ——
G enera i d ea. systems compalibility/_\
criteria \
e lipear - “system ( numbers

- t h
text as a grap . 4 ) \ nmmau

- textual entity (word/sentence/...) having MAX

constraints
PageRank is the most important one | upper\
/gquations nonstrict B
/ undas
Eg keywords: strict inequations components _J
1 ) tokenize text, SOIUIM\\\S-/aIgOﬁmm/S’_\mmtruc(ion
2) filter out words by part-of-speech, e mimmalj

3) a graph: if the number of words between a pair of

words is greater than N, draw an edge between them | Keywords assigned by TextRank:

linear constraints; linear diophantine equations; natural numbers; nonstrict

4 ) compu te Pag eRank, inequations; strict inequations; upper bounds
Keywords assigned by human annotators:

5) merge the close nodes with h |g h Pag eRank into one linear constraints; linear diophantine equations; minimal generating sets; non—

« ” « ” « ” strict inequations; set of natural numbers; strict inequations; upper bounds
(“Matlab” -> “code” => “Matlab_code”).

Mihalcea, R., Tarau, P. TextRank: Bringing Order into Texts. // Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. — 2004. — Vol. 4. — Ne 4. — P. 404—-411



Please note

Graph-based NLP is also a way to look at text mining
tasks, there is a 2011 book on that:

- graph theory

- probability theory

- linear algebra

- social networks analysis methods

- natural language processing, finally

Graph-Based
Natural Language
Processing and
Information
Retrievgl

16



Other applications

Language detection

Named-entity recognition

POS-tagging

Speech recognition

...useful almost every time we deal with sequences
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Plan for today: theory and applications

T—Ptharkevehans
a—tanguage-models
b K I . ol heati

2. Elements of information theory
a. Information
i. Collocations extraction
ii. One weird trick to estimate sentiment
b. Entropy
i.  Connection between entropy and perplexity
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Information theory elements:
entropy and C°

1948 - A Mathematical Theory of Communication,
Claude Shannon; information theory foundations are introduced

1949 - published as a book with Warren Weaver's commentary
Information entropy and bit are introduced

Found applications in compression algorithms, cryptography,
signal processing, etc.

THE MATHEMATICAL THEORY
OF COMMUNICATION

by Claude E. Sh

19



Self-Information

» How much information the object represents; the
less probable (or the more 'sudden’) the event, the
greater the information

I(X) = —l0g2p(x)

(log base may be different)
» Example: it is known that the event occurred

p(x) =1
Then

I(x;) = —logoN~" = log.N,

length of the binary code of number of values!



Self-Information

» If all words are equally frequent and occur
independently, we can’t ‘compress’ the text (we’ll
have to encode all words with numbers), otherwise

p(Xo) = 3,P(X1) = 5,P(X2) = 3

lo =10923,11 = 10923,1> = 0923
p(Xo) = 3,P(X1) = §,P(X2) = §

loy =10923/2,1, = 10956,1, = l0g-6

» Rare events are the most 'informative’

we can afford to encode them with long codes

21



Self-Information

» BTW, if p(xg) = 0.5, p(X1) = p1,...,P(Xn) = Pn
I(xg) = —10920.5 = 1 bit

(the name of the measure of information depends
on the log base)

» NB! We do not depend on other frequencies
distribution!

22



* Mutual information

A measure of “common volume of information” shared by X and Y

I(X;Y)=> ) p(z,y)log ( p(m’y))),

oY zeX p(z)p(y

e \When X and Y are independent, equals zero
e \When there’s functional dependency, turns into X-s entropy (or Y-s entropy)

Is used, e.g. for feature selection

23



Pointwise mutual information

PMI

p(z,y) 1 p(zly) ~  p(ylz)
og = log :

p(z)p(y) p(x) ()

pmi(z;y) = log

Intuitively:

e PMI shows the volume of added information about word2, when we see the
word1
Can be applied to non-consecutive words in the text

e Gives large weight to rare phrases
Reasonable to use as a measure of independence, or as a measure of
non-randomness of co-occurence (we'll use this)

24



Pointwise mutual information: example Ne1

Collocations extraction: if words co-occur a little less frequently than they occur on
their own, they are collocations; probabilities estimated as frequencies

Wikipedia, Oct. 2015

word1 word 2  countword 1 countword 2 count of co-occurrences PMI

' puerto » rico 1938 » 1311 » 1159 : 10.0349081703 ‘
hong . kong 2438 2694 . 2205 ‘ 9.72831972408 .
I los » angeles 3501 v 2808 : 2791 : 9.56067615065 ‘
carbon . dioxide 4265 1353 . 1032 ‘ 9.09852946116 .
I prize . laureate 5131 1676 . 1210 8.85870710982 ‘
| san . francisco . 5237 » 2477 . 1779 . 8.83305176711 .

to | and 1025659 . 1375396 . 1286 . -3.08825363041

o | in 1025659 | 1187652 | 1066 | -3.12911348956

of : and 1761436 » 1375396 » 1190 . -3.70663100173

https://en.wikipedia.org/wiki/Pointwise_mutual_information
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Pointwise mutual information: example Ne2

Not a SOTA (lol, 2002 paper), but a smart idea of using
web search engines for sentiment analysis:

p(word, & word>)
. . PMI(word,, word,) = log,
1. Using POS-aware patterns, extract certain word i)

collocations

A search operator available in AltaVista

A SO(phrase) = PMI(phrase, “excellent”™)
2. Query AltaVista: éy - PMI(phrase, “poor”)
“ . " altavista
poor”, “<extr. phrase> NEAR poor”,
“‘excellent”, “<extr. phrase> NEAR excellent” SO(phrase) =

hits(phrase NEAR “excellent™) hits(“poor™)
3. Compute and average Semantic Orientation for all e e
phrases; if SO > 0 then positive

Peter D. Turney. 2002. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th g
Annual Meeting on Association for Computational Linguistics (ACL '02). Association for Computational Linguistics, Stroudsburg, PA, USA, 417-424.



Plan for today: theory and applications

TS et tricl : :
b. Entropy
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Literature, recommendations

o

Martin-Jurafsky 3 ed., Chapter 4

NLP course @ CSC 2014

PageRank (better explanations and material is more complete)
Anand Rajaraman and Jeffrey David Ullman. 2011.

Mining of Massive Datasets

Ryan Tibshirani, Data Mining lectures slides

Wikipedia + relevant materials links on it

PomaHoBckun U. B. lucKkpeTHbIN aHanus: Y4ebHoe nocobue ans
CTYOEHTOB, cneuuanu3npyrolnxca rno npuknagHon matemMaTuke u
NHpopmaTumke

28


http://www.stat.cmu.edu/~ryantibs/datamining/lectures/03-pr.pdf

Information entropy

https://twitter.com/dmimno/status/968856022164 148224
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Information entropy

X — «predicted values»
Possible interpretations:

» self-information expected value (as a measure of
«meaningfulness»),

» a measure of «unpredictability» of the system
Epy (X),

P

30


http://www.math.spbu.ru/user/jvr/DA_html/add_1_08_ent_hist.html

Information entropy

» Entropy — is the only function (up to a constant
factor) that has the following properties:

1. continuity

2. symmetry
(the reordering of probabilities changes nothing)

3. maximal for uniform distribution

4. given that the distribution is uniform, outcomes
number increase implies entropy increase

| 1 | ||
Hn(pyo - ) < HN+1(N—+1a---> N—+1)

5. grouping outcomes leads to losing information the
following way:

» Proved by C. Shannon.

31



Cross entropy

Cross entropy — average number of bits necessary for
recognition of the event if the coding scheme is based
on the given probability distribution q instead of the
‘true’ p.«wikipedia»

H(p.q) = Zp xj)log2q(x;)

=1

We use the 'true’ distribution for weighting the
estimates information.

32



Cross entropy and her friends

H(p.q) = Zp (X))log2q(xj) + H(p) — H(p) =

=1

n
=Y p(xi)(log2p (X)) — 1092q(X;))+H(pP) = Dk (p||q)+H(P)
i=1
» Dx; — Kullback-Leibler divergence
» VERY IMPORTANT

H(p) <H(p,q) Vp,q

which is why cross entropy is useful: the more

precise is the estimate g, the smaller the difference

+ cross entropy will never overestimate the 'true’

entropy 33



BTW*

An interesting point of view on mutual information

I(X;Y) =) > p(z,y)log

yeY xzeX

(

p(z,y)

p(z) p(

I(X;Y) = Dxy(p(z, y)|[p(z)p(y))-

y))’

34
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