Markov models, information theory and why we care about it all

Anton Alekseev, Steklov Mathematical Institute in St Petersburg NRU ITMO,

NRU ITMO, St Petersburg, 2019 anton.m.alexeyev+itmo@gmail.com

# Plan for today: theory and applications

#### Markov chains

- a. Language models
- b. Keywords extraction and other applications

#### 2. Elements of information theory

- Information
  - Collocations extraction
  - ii. One weird trick to estimate sentiment
- b. Entropy
  - i. Connection between entropy and perplexity

# Markov property

N-gram models we discussed earlier actually are Markov models

**Markov property:** conditional distribution of the next state of a stochastic process depends only on current state

$$\mathbb{P}(X_{n+1}=i_{n+1}\mid X_n=i_n,X_{n-1}=i_{n-1},\ldots,X_0=i_0)=\mathbb{P}(X_{n+1}=i_{n+1}\mid X_n=i_n)$$

The process with discrete time (or a sequence of random events), that has this property is called a **Markov chain** 

A simple and a well-studied probabilistic model suitable for many tasks





### Markov chain

The model is entirely set by the stochastic matrix = transitions probabilities matrix

**Example**. Events: vowel (v), consonant (c), white space/punctuation (s) (probabilities are set at random, consider the estimation an exercise)





DEMO: ugly self-promotion: <a href="http://antonalexeev.hop.ru/markov/index.html">http://antonalexeev.hop.ru/markov/index.html</a>

### Markov chains

 So — Markov chain as a process is set by the matrix of transitions probabilities and probabilities of initial states

$$\pi = (p_1^{(0)}, ..., p_n^{(0)})^T$$
 $P_{trans} = \{p_{i \to j}, i, j \in 1 : n, \sum_{j=1}^{n} p_{i \to j} = 1 \forall i\}$ 

 Probability of a trajectory of length one x<sub>i</sub>

$$p = p_i$$

of length two  $x_i \rightarrow x_i$ 

$$p = p(x_i)p(x_i|x_i) = \pi_i P_{i,i}$$

of length three  $x_i \rightarrow x_i \rightarrow x_k$ 

$$p = p(x_i)p(x_j|x_i)p(x_k|x_i,x_j) = p(x_i)p(x_j|x_i)p(x_k|x_j) = \pi_i P_{i,j} P_{j,k}$$

#### Markov chains

Evident enough, probability of trajectory of length n is computed like that

$$p(x_a, ..., x_z) = \pi_a \prod_{i=2}^{|steps|} P_{steps[i], steps[i+1]}, steps = (a, ..., z)$$

▶ It is easy to prove that the vector of probabilities of the process to be in certain states at m—th step can be computed like that

$$\pi^{(m)} = (p_1^{(m)}, ..., p_n^{(m)}) = \pi P_{tr}^m$$

### Markov chains: the limit

One can demonstrate that if  $P_{trans\ i,j} = p_{i\rightarrow j} > 0$ , there exist a single asymptotic distribution

$$\mathbf{\hat{p}} = \lim_{m \to \infty} \pi P_{trans}^m,$$

and

$$\hat{\mathbf{p}} = \hat{\mathbf{p}} P_{trans}, \sum \hat{p}_i = 1$$

Such distribution is called the **stationary** one.

# Stationary distribution: interpretation

Suppose we are watching random [web] surfer, who moves from state to state **eternally**, making decisions where to glide using the distribution of states in the current row



http://slideplaver.com/slide/8080871/

Then each value in the vector of stationary distribution is **the fraction of total time** spent in the corresponding state

# Application example №1 (previous lecture)

# N-gram model Model: $P(x_1,...x_n) = \prod_{j=1}^n P(x_j | x_{j-N+1}...x_{j-1})$ one has to add N -1 terms «begin» ^and «end» \$ from both sides (padding) ▶ We can estimate the probability like that $P(x_i|x_{i-N+1}...x_{i-1}) = \frac{Count(x_{i-N+1}...x_{i-1}x_i)}{Count(x_{i-N+1}...x_{i-1})}$ $P(x_i|x_{i-1}) = Count(x_i, x_{i-1})Count(x_{i-1})$ E.g. for bigrams: P(hello,i,love,you) = $= P(hello)^{n}P(i|hello)P(love|i)P(you|love)P(\$|you)$

The 'value' of the web page is defined by

- the 'value' of the pages that refer to it,
- a number of pages those pages refer to (less = better)

Let  $L_{ij}=1$  if webpage j links to webpage i (written  $j \rightarrow i$ ), and  $L_{ij}=0$  otherwise

Also let  $m_j = \sum_{k=1}^n L_{kj}$ , the total number of webpages that j links to

First we define something that's almost PageRank, but not quite, because it's broken. The BrokenRank  $p_i$  of webpage i is

$$p_i = \sum_{j \to i} \frac{p_j}{m_j} = \sum_{j=1}^n \frac{L_{ij}}{m_j} p_j$$

Written in matrix notation,

$$p = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}, \quad L = \begin{pmatrix} L_{11} & L_{12} & \dots & L_{1n} \\ L_{21} & L_{22} & \dots & L_{2n} \\ \vdots & & & & \\ L_{n1} & L_{n2} & \dots & L_{nn} \end{pmatrix},$$

$$M = \begin{pmatrix} m_1 & 0 & \dots & 0 \\ 0 & m_2 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & m_n \end{pmatrix}$$

Dimensions: p is  $n \times 1$ , L and M are  $n \times n$ 

Now re-express definition on the previous page: the BrokenRank vector p is defined as  $p = LM^{-1}p$ 

Does that remind us of anything? Yep, stationary distribution!

$$P(\text{go from } i \text{ to } j) = \begin{cases} 1/m_i & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

#### Cool!

- set the probabilities as above,
- 2. compute the stationary distribution,
- 3. use it as a quality/value measure,
- 4. ??????
- PROFIT

#### Or not?

$$\mathrm{P}(\mathrm{go}\;\mathrm{from}\;i\;\mathrm{to}\;j) = \begin{cases} 1/m_i & \mathrm{if}\;i\to j\\ 0 & \mathrm{otherwise} \end{cases}$$

#### Cool!

- 1. ??????? One can demonstrate asymptotic distribution

  PROF exist a single asymptotic distribution + cycles, hanging nodes etc. in real life graphs

### Or not?

PageRank is given by a small modification of BrokenRank:

$$p_i = \frac{1-d}{n} + d\sum_{j=1}^{n} \frac{L_{ij}}{m_j} p_j,$$

where 0 < d < 1 is a constant (apparently Google uses d = 0.85)

In matrix notation, this is

$$p = \left(\frac{1-d}{n}E + dLM^{-1}\right)p,$$



Which means that once in a while, e.g. 15 times out of 100, we allow our surfer to jump to a completely random page

$$P(\text{go from } i \text{ to } j) = \begin{cases} (1-d)/n + d/m_i & \text{if } i \to j \\ (1-d)/n & \text{otherwise} \end{cases}$$

# Application example №3: PageRank (TextRank)

#### General idea:

- text as a graph
- textual entity (word/sentence/...) having MAX
   PageRank is the most important one

#### E.g. keywords:

- tokenize text,
- filter out words by part-of-speech,
- a graph: if the number of words between a pair of words is greater than N, draw an edge between them
- 4) compute PageRank,
- 5) merge the close nodes with high PageRank into one ("Matlab" -> "code" => "Matlab\_code").



#### Keywords assigned by TextRank:

linear constraints; linear diophantine equations; natural numbers; nonstrict inequations; strict inequations; upper bounds

#### Keywords assigned by human annotators:

linear constraints; linear diophantine equations; minimal generating sets; nonstrict inequations; set of natural numbers; strict inequations; upper bounds

### Please note

**Graph-based NLP** is also a way to look at text mining tasks, there is a 2011 book on that:

- graph theory
- probability theory
- linear algebra
- social networks analysis methods
- natural language processing, finally



# Other applications

- Language detection
- Named-entity recognition
- POS-tagging
- Speech recognition
- ...useful almost every time we deal with sequences

# Plan for today: theory and applications

#### Markov chains

- a. Language models
- b. Keywords extraction and other applications

#### 2. Elements of information theory

- a. Information
  - Collocations extraction
  - ii. One weird trick to estimate sentiment
- b. Entropy
  - Connection between entropy and perplexity

# Information theory elements: entropy and C<sup>o</sup>

1948 - A Mathematical Theory of Communication, Claude Shannon; information theory foundations are introduced

1949 - published as a book with Warren Weaver's commentary

Information entropy and bit are introduced

Found applications in compression algorithms, cryptography, signal processing, etc.





### Self-Information

How much information the object represents; the less probable (or the more 'sudden') the event, the greater the information

$$I(X) = -log_2 p(x)$$

(log base may be different)

Example: it is known that the event occurred p(x) = 1Then

$$I(\mathbf{x}) = 0$$

▶ Uniform distribution:  $p(x_i) = \frac{1}{N} \ \forall x \in 1 : N$ 

$$I(x_i) = -\log_2 N^{-1} = \log_2 N,$$

length of the binary code of number of values!

### Self-Information

If all words are equally frequent and occur independently, we can't 'compress' the text (we'll have to encode all words with numbers), otherwise

$$p(x_0) = \frac{1}{3}, p(x_1) = \frac{1}{3}, p(x_2) = \frac{1}{3}$$

$$I_0 = log_2 3, I_1 = log_2 3, I_2 = log_2 3$$

$$p(x_0) = \frac{2}{3}, p(x_1) = \frac{1}{6}, p(x_2) = \frac{1}{6}$$

$$I_0 = log_2 3/2, I_1 = log_2 6, I_2 = log_2 6$$

Rare events are the most 'informative'

we can afford to encode them with long codes

### Self-Information

▶ BTW, if 
$$p(x_0) = 0.5$$
,  $p(x_1) = p_1$ , ...,  $p(x_n) = p_n$ 

$$I(x_0) = -log_2 0.5 = 1 \ bit$$

(the name of the measure of information depends on the log base)

NB! We do not depend on other frequencies distribution!

### \* Mutual information

A measure of "common volume of information" shared by X and Y

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left( rac{p(x,y)}{p(x) \, p(y)} 
ight),$$

- When X and Y are independent, equals zero
- When there's functional dependency, turns into X-s entropy (or Y-s entropy)

Is used, e.g. for feature selection

### Pointwise mutual information

#### **PMI**

$$\operatorname{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)} = \log rac{p(x|y)}{p(x)} = \log rac{p(y|x)}{p(y)}.$$

#### Intuitively:

- PMI shows the volume of added information about word2, when we see the word1
- Can be applied to non-consecutive words in the text
- Gives large weight to rare phrases
- Reasonable to use as a measure of independence, or as a measure of non-randomness of co-occurence (we'll use this)

# Pointwise mutual information: example №1

Collocations extraction: *if words co-occur a little less frequently than they occur on their own, they are collocations*; probabilities estimated as frequencies

Wikipedia, Oct. 2015

| word 1 | word 2    | count word 1 | count word 2 | count of co-occurrences | PMI           |
|--------|-----------|--------------|--------------|-------------------------|---------------|
| puerto | rico      | 1938         | 1311         | 1159                    | 10.0349081703 |
| hong   | kong      | 2438         | 2694         | 2205                    | 9.72831972408 |
| los    | angeles   | 3501         | 2808         | 2791                    | 9.56067615065 |
| carbon | dioxide   | 4265         | 1353         | 1032                    | 9.09852946116 |
| prize  | laureate  | 5131         | 1676         | 1210                    | 8.85870710982 |
| san    | francisco | 5237         | 2477         | 1779                    | 8.83305176711 |

| to | and | 1025659 | 1375396 | 1286 | -3.08825363041 |
|----|-----|---------|---------|------|----------------|
| to | in  | 1025659 | 1187652 | 1066 | -3.12911348956 |
| of | and | 1761436 | 1375396 | 1190 | -3.70663100173 |

# Pointwise mutual information: example №2

Not a SOTA (lol, 2002 paper), but a smart idea of using web search engines for sentiment analysis:

Using POS-aware patterns, extract certain word collocations

$$PMI(word_1, word_2) = \log_2 \left[ \frac{p(word_1 \& word_2)}{p(word_1) p(word_2)} \right]$$

- Query AltaVista:
  - "poor", "<extr. phrase> NEAR poor",
  - "excellent", "<extr. phrase> NEAR excellent"
- Compute and average Semantic Orientation for all phrases; if SO > 0 then **positive**

A search operator available in AltaVista

# Plan for today: theory and applications

#### 1. Markov chains

- a. Language models
- b. Keywords extraction and other applications

#### Elements of information theory

- a. Information
  - i. Collocations extraction
  - ii. One weird trick to estimate sentiment
- b. Entropy

# Literature, recommendations

- 1. Martin-Jurafsky 3 ed., Chapter 4
- 2. NLP course @ CSC 2014
- PageRank (better explanations and material is more complete)
   Anand Rajaraman and Jeffrey David Ullman. 2011.
   Mining of Massive Datasets
- 4. Ryan Tibshirani, <u>Data Mining lectures slides</u>
- 5. Wikipedia + relevant materials links on it
- 6. Романовский И. В. Дискретный анализ: Учебное пособие для студентов, специализирующихся по прикладной математике и информатике

# Information entropy



https://twitter.com/dmimno/status/968856022164148224

### Information entropy

$$H(X) = -\sum_{x \in X} p(x) log_2 p(x),$$

X — «predicted values»Possible interpretations:

- self-information expected value (as a measure of «meaningfulness»),
- ▶ a measure of «unpredictability» of the system  $\mathbb{E}_{p_X}I(X)$ ,
- **>** ...

## Information entropy

- Entropy is the only function (up to a constant factor) that has the following properties:
  - 1. continuity
  - symmetry (the reordering of probabilities changes nothing)
  - maximal for uniform distribution
  - given that the distribution is uniform, outcomes number increase implies entropy increase

$$H_N(\frac{1}{N},...,\frac{1}{N}) < H_{N+1}(\frac{1}{N+1},...,\frac{1}{N+1})$$

grouping outcomes leads to losing information the following way:

$$H_N(\frac{1}{N},...,\frac{1}{N}) = H_k(\frac{b_1}{N},...,\frac{b_k}{N}) + \sum_{i=1}^k \frac{b_i}{N} H(\frac{1}{b_i},...,\frac{1}{b_i}),$$

$$b_1 + ... + b_k = N$$

Proved by C. Shannon.

### Cross entropy

Cross entropy — average number of bits necessary for recognition of the event if the coding scheme is based on the given probability distribution q instead of the 'true' p.«Wikipedia»

$$H(p,q) = -\sum_{i=1}^{n} p(x_i) log_2 q(x_i)$$

We use the 'true' distribution for weighting the estimates information.

## Cross entropy and her friends

$$H(p,q) = -\sum_{i=1}^{n} p(x_i)log_2q(x_i) + H(p) - H(p) =$$

$$= \sum_{i=1}^{n} p(x_i)(log_2p(x_i) - log_2q(x_i)) + H(p) = D_{KL}(p||q) + H(p)$$

- ▶ D<sub>KL</sub> Kullback-Leibler divergence
- VERY IMPORTANT

$$H(p) \leq H(p,q) \ \forall p,q$$

which is why cross entropy is useful: the more precise is the estimate *q*, the smaller the difference + cross entropy will never overestimate the 'true' entropy

### BTW\*

An interesting point of view on mutual information

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left( rac{p(x,y)}{p(x) \, p(y)} 
ight),$$
  $I(X;Y) = D_{\mathrm{KL}}(p(x,y) \| p(x) p(y)).$ 

Markov models, information theory and why we care about it all

Anton Alekseev, Steklov Mathematical Institute in St Petersburg NRU ITMO,

NRU ITMO, St Petersburg, 2019 anton.m.alexeyev+itmo@gmail.com