
Vector semantics
Anton Alekseev,
Steklov Mathematical Institute in St Petersburg NRU ITMO,

NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Distributional hypothesis
● Zellig S. Harris: “oculist and eye-doctor...

occur in almost the same environments”,
“If A and B have almost identical
environments. . . we say that they are
synonyms”

● Most famous, John Firth:
You shall know a word by the company
it keeps!

Harris, Z. S. (1954). Distributional structure. Word, 10, 146–162. Reprinted in J. Fodor and J. Katz, The Structure of Language, Prentice Hall, 1964
Z. S. Harris, Papers in Structural and Transformational Linguistics, Reidel, 1970, 775–794

Firth, J. R. (1957). A synopsis of linguistic theory 1930– 1955. In Studies in Linguistic Analysis. Philological Society. Reprinted in Palmer, F. (ed.) 1968.
Selected Papers of J. R. Firth. Longman, Harlow

BTW,
Z. Harris is
sometimes
referred to
as Noam
Chomsky’s
teacher

John Rupert Firth --
the originator of the

London school of
linguistics

2

Words in similar contexts have similar meaning

Nothing of things that have been said was important.
Nothing of stuff that has been announced was useful.

I bought X in the nearest shop.
I came home, hung X on the balcony and hung my trousers on it.
The prisoners used X to escape from their cell’s window.

Can you guess what is X? Any ideas of the properties it has?

3

What is ‘similarity’?
- first-order co-occurrence

(syntagmatic association)
Words close in the text, such as:
‘drank’ -- and ‘lemonade’/’water’/’tea’

- second-order co-occurrence
(paradigmatic association)
Words having similar neighbours:
‘Tatra’ and ‘Carpathian’, ‘to pet’ and ‘to stroke’

4

What IS ‘similarity’?

https://speakerdeck.com/mlreview/yoav-goldberg-word-embeddings-what-how-and-whither 5

https://speakerdeck.com/mlreview/yoav-goldberg-word-embeddings-what-how-and-whither

Every word needs a ‘meaning’ vector
What for?

1. Most important: something like transfer learning: instead of BoW
(this way we reuse information from another (possibly bigger) text collection
[and it actually helps])

2. A tool for finding synonyms and other ‘related’ words in some sense

3. Language research tool!
a. Example: semantic evolution for historians:

https://nlp.stanford.edu/projects/histwords/
(there are a few earlier works BTW)

4. Fun! quizzes (odd one out), rewriting Great Russian Novels, etc.

6

https://nlp.stanford.edu/projects/histwords/
https://habrahabr.ru/post/326380/

Ideas:
how do we learn to find words with similar meaning?

7

We’ve met before: term-document matrix
But now we care about rows, not columns
(word vectors, not document vectors)

Zemfira --
Nebomoreoblaka

Sky --
Wikipedia

Fabrika --
The Sea
Calls

Eugene Onegin
Chapter 1

Anastasia -- The
Queen of Gold
Sand

sky 6 60 2

sea 6 10 4 1

cloud 6 18

love 6

sand 1 2
8

We’ve met before: term-document matrix
But now we care about rows, not columns
(word vectors, not document vectors)

9

Zemfira --
Nebomoreoblaka

Sky --
Wikipedia

Fabrika --
The Sea
Calls

Eugene Onegin
Chapter 1

Anastasia -- The
Queen of Gold
Sand

sky 6 60 2

sea 6 10 4 1

cloud 6 18

love 6

sand 1 2

We’ve met before: term-document matrix
But now we care about rows, not columns
(word vectors, not document vectors)

Zemfira --
Nebomoreoblaka

Sky --
Wikipedia

Fabrika --
The Sea
Calls

Eugene Onegin
Chapter 1

Anastasia -- The
Queen of Gold
Sand

sky 6 60 2

sea 6 10 4 1

cloud 6 18

love 6

sand 1 2

>>> import numpy as np
>>> sea = np.array([6,0,10,4,1])
>>> sand =np.array([0,0,1,0,2])
>>> cloud = np.array([6,18,0,0,0])

>>> cosine = lambda x,y: x.dot(y) / np.linalg.norm(x) / np.linalg.norm(y)

>>> cosine(sea, sand) > cosine(sea, cloud)
True
>>> cosine(sea, sand) > cosine(sand, cloud)
True

10

Discussion: term-document matrix
● We need A LOT of representative documents, otherwise the

approach won’t work

● Dimensionality depends on the text collection size

● Distribution of topics should not be ‘skewed’

● To solve this, maybe we could split documents into
subdocuments...
E.g. sentences? (NO! why?)

11

Discussion: term-document matrix
● We need A LOT of representative documents, otherwise the

approach won’t work

● Dimensionality depends on the text collection size

● Distribution of topics should not be ‘skewed’

● To solve this, maybe we could split documents into
subdocuments...
E.g. sentences? (NO! why?)

However, looking at smaller CONTEXT may be a great idea
12

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

13

Way better: word-word (word-context) matrix
We count how many times the word occured in the same context
with other words (e.g. in a [-2, 2] window)

...in Admiralteysky district, St Petersburg. A 37-year old citizen
was arrested by [a police brigade at around] midnight close to the
station of…

...an explosion rambled on Tuesday night close to the entrance of
[the police station in the] city of Helsingborg...

...the unknown with cold steel arms attacked [the police brigade
at the] gas station...

In [Vyborg, police station might eventually] catch fire...

We get sparse vectors with a large number of dimensions

brigade city police building

brigade x

city ... x

police 2 1 x 2

building

..

militia 3 0 1 4

w
ords

contexts

Similar words have almost the same row cells filled 14

Way better: word-word (word-context) matrix
Important: there are many ways to define ‘co-occurence’

E.g., one can choose a ‘syntactically motivated’ part of a
sentence as a context -- instead of a window
see. "Dependency-Based Word Embeddings", Omer Levy and Yoav Goldberg, 2014
(however, this paper is on dense vectors, the ones we haven’t yet discussed)

The choice of context window defines vector’s properties

1. Small window -- ~ ‘syntactic’ similarity
2. Larger window -- ~ ‘meaning’ similarity

15

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

16

Example: HAL (Hyperspace Analogue to Language)

Oldschool example: ‘window
approach’ where we increment
counters for ALL pairs of words in a
window

This way the words that are closer
to each other in the window get more
‘weight’

Lund, K., Burgess, C. & Atchley, R. A. (1995). Semantic and associative priming in a high-dimensional semantic space. Cognitive Science Proceedings (LEA), 660-665.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instrumentation, and Computers, 28, 203-208.
17

https://www.researchgate.net/profile/Curt_Burgess/publication/230876271_Semantic_and_associative_priming_in_high-dimensional_semantic_space/links/55599b9b08ae980ca610720b/Semantic-and-associative-priming-in-high-dimensional-semantic-space.pdf
https://link.springer.com/content/pdf/10.3758%2FBF03204766.pdf

Example: HAL (Hyperspace Analogue to Language)

Lund, K., Burgess, C. & Atchley, R. A. (1995). Semantic and associative priming in a high-dimensional semantic space. Cognitive Science Proceedings (LEA), 660-665.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instrumentation, and Computers, 28, 203-208.
18

https://www.researchgate.net/profile/Curt_Burgess/publication/230876271_Semantic_and_associative_priming_in_high-dimensional_semantic_space/links/55599b9b08ae980ca610720b/Semantic-and-associative-priming-in-high-dimensional-semantic-space.pdf
https://link.springer.com/content/pdf/10.3758%2FBF03204766.pdf

Disadvantages of ‘simple counts’
Counts assign large values to ‘useless’ words (in terms of meaning) such as
prepositions, articles, etc. However they do not add any useful information.

Question: any ideas on how to modify
weight(word, context), so that useless
yet frequent words won’t have large weight?

19

Let’s use ‘importances’ as weights
We know at least two ways to do it

For term-document vectors (discussed earlier):

...simple idf is also valid.

For term-term case:

Also: be careful when removing stop-words! 20

PMI-weighted word-context matrix

Estimating probabilities as frequencies of occurrences within the same
window for a given word

p(w) = count(police, *) / all =
sum of ‘police’ row / sum of matrix elements

p(c) = count(*, station) / all =
sum of ‘station’ row / sum of matrix elements

p(w, c) = count(police station) / all =
2 / sum of matrix elements

21

brigade city police building

brigade x

city ... x

police 2 1 x 2

building

..

militia 3 0 1 4
w

ords

contexts

Positive PMI (PPMI)
We often have to deal with rare words (e.g. one in a million), thus checking
whether two events with probabilities lower than 10^-6 (estimated as a
simple fraction of counts) is a bad idea :(

22

Problem: (P)PMI “likes” rare events
Omer Levy, Yoav Goldberg, Ido Dagan introduced a trick to deal with it in 2015:

...Inspired by similar ideas in word2vec and GloVe implementations
A value of 0.75 showed the best performance on all tasks
(though may need tuning on your task!)
Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distributional similarity with lessons learned from word embeddings. TACL, 3, 211–225. 23

Other weighting schemes
Student’s t-test: estimation how far from each other are observed mean and
expected mean

24

“Can we reject this hypothesis?”

One can use this statistic
for collocations extraction
as well

Почему так можно?
Manning, C. D. and Schutze, H. (1999). ¨ Foundations of Statistical Natural Language Processing. MIT Press.
Curran, J. R. (2003). From Distributional to Semantic Similarity. PhD thesis

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

25

Vector closeness estimation
We already know one way to do it

Another view on this:

1. scalar product is a ‘weighted set intersection cardinality’
2. we need the denominator as a way to heal scalar product’s tendency to grow

because of the large vector values (possibly few)
26

Vector closeness estimation - 2
“Soft” Jaccard distance (context = set element)

Normalize vectors so that the sum of values of each equals to 1 and compute the
KL-divergence between them

Is that OK?

27

Vector closeness estimation - 2
“Soft” Jaccard distance (context = set element)

Normalize vectors so that the sum of values of each equals to 1 and compute the
KL-divergence between them

We may have zeros we can’t divide by or take logarithm of
28

Vector closeness estimation* - 3
Symmetric distance based on Kullback-Leibler
divergence:

Jensen-Shannon divergence, a sum of KL-d
between each distribution and an average
distribution

In our case it looks like this

29

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

30

Word vectors quality evaluation
1. Extrinsic evaluation

the best way to estimate word vectors quality for practical tasks. E.g.:
a. short texts classification
b. any other useful task :)

2. Intrinsic evaluation
a. mainstream: evaluation on pairs of words that are ‘similar’ in some sense
b. mainstream: syntactic/semantic analogy tasks
c. clustering words labeled with ‘groups’ (+computing purity)
d. ...a few more ideas

31See also: Schnabel, Tobias & Labutov, Igor & Mimno, David & Joachims, Thorsten. (2015). Evaluation methods for unsupervised word embeddings. 298-307. 10.18653/v1/D15-1036.
Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors M Baroni, G Dinu, G Kruszewski Proceedings of Association for Computational Linguistics (ACL) 1

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

32

Reminder
We already know sparse representations:
term-term/term-document counts/weights

1) how to build the matrix
2) a few ways to set weights
3) tricks to tune
4) how to evaluate (extrinsic/intrinsic)

33

“Dense” vectors

34

- tens of thousands dimensions to hundreds
dimensions

- small number of zeros
- moving away from approach ‘coordinate=term’

But... why would we do it?
Sparse vectors we’ve discussed assign every word a coordinate, hence

- models using sparse vectors as input are hard to train: a large
number of parameters sometimes makes machine learning models
too complex

- it is hard to ‘grasp’ synonymy as contexts-synonyms simply have
different and unrelated coordinates

35

Main approaches

1. Matrix factorization
2. “Predictive”, “neural” approaches
3. Word clustering

36

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

37

Matrix decomposition
Intuition:

1) we decrease the number of dimensions hoping to keep the
regularities and laws present in the data (e.g., synonymy),

2) one may want to keep only the most ‘important’ coordinates
(the ones that have the largest variance in values)

38

SVD: singular value decomposition
Any matrix can be represented like this

where S is a diagonal matrix (having the same dimensions as A),
values on diagonals are singular values, U, V are orthogonal

Eckart-Yang theorem
the best possible rank k approximation of the matrix A (in terms of Frobenius norm)
is a singular value decomposition, where in the resulting matrix S only first k diagonal
elements are non-zero and are ordered in non-increasing order.

39

Lower rank approximation
The task can be posed in a different way

W: matrix: w words x m dimensions of the
‘latent space’, and

- columns are orthogonal to each other
- columns are ordered in the order of

decreasing variance in coordinates in a
new space

Σ: diagonal matrix m x m, where each value on
the diagonal reflects the ‘importance’ of the
corresponding dimension

C: matrix: m x c
40

Truncated SVD
Letting only top K dimensions live

Then our word vector representations are
corresponding rows in matrix Wk , that is,
k-dimensional vectors

41

LSA: Latent Semantic Analysis

Applying SVD (m = hundreds) to term-document matrix,
setting weights as a product of:

the local weight

the global weight

for all terms i in all documents j

42

S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman. 1988. Using latent semantic analysis to improve access to textual information.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '88), J. J. O'Hare (Ed.). ACM, New York, NY, USA, 281-285.

Truncated SVD for term-term PPMI matrix
We simply apply SVD to word-context matrix and cut off some of the dimensions,
choosing k manually. Sometimes works better than the sparse analogue.

Other notes on SVD as a way of obtaining vector representations of words:

- (WΣ)T can also be treated and used as word vectors (it doesn’t work, though)
- Truncating (you never know, but it seems so) helps to generalize and filter out useless information,
- Sometimes throwing away the first few dimensions may be helpful

However, it is computationally hard

43

Lecture plan
1. Sparse vectors

a. “Term-document” approach
b. “Term-term” approach

i. Construction
ii. HAL

c. Weighting
d. Semantic similarity estimation
e. Quality evaluation

2. Dense vectors
a. Matrix decomposition
b. “Predictive” approaches

44

‘Predictive’ approaches

The inspiration for such techniques --
neural language modeling (see the link below)

What we have discussed so far is usually called
context-counting models; now we move on to context-predicting
models

We’ll look at word2vec only, however, many cool and somewhat similar
models have been invented since then (e.g. fastText)

45Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin A Neural Probabilistic Language Model, JMLR 3(Feb):1137-1155, 2003.

Let’s grumble
2013. Google’s researchers team publishes a paper describing a novel
word vectors representations training algorithm, demonstrating that vectors

1) allow to estimate words similarity reasonably well
2) preserve some relations as vector subtraction

Thus, thanks to Google’s PR-machine all the coders (even without any linguistic
background or interest) around the world now know what distributional semantics is :)

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space
// In Proceedings of Workshop at ICLR, 2013
Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word Representations
// In Proceedings of NAACL HLT, 2013

46

word2vec is a family of algorithms
SGNS: Skip-grams with Negative Sampling

predicting ‘window contexts’ given the word

CBOW: Continuous Bag-of-Words
predicting the word given the ‘window context’ (won’t discuss)

inb4 -- T. Mikolov:

Skip-gram: works well with small amount of the training data,
represents well even rare words or phrases.
CBOW: several times faster to train than the skip-gram,
slightly better accuracy for the frequent words

https://www.quora.com/What-are-the-continuous-bag-of-words-and-skip-gram-architectures
47

https://www.quora.com/What-are-the-continuous-bag-of-words-and-skip-gram-architectures

skip-grams
Scanning the text with 2L-word window and learning to predict context words for the current
word; that is, given the word wt we estimate the probabilities of its occurrence close to the
words wt-Lwt-L+1...wt-1wt+1...wt+L.

Prediction - then correction based on divergence from true values -
- prediction - correction - …

Core steps:

1) Each word and each context are paired with a dense vector (initially a random one)
2) Word and context similarity score -- their vectors’ scalar product
3) We train vectors values so that p(vcontext|vword) (computed based on scalar product (2))

for correct contexts were larger

48

skip-grams

49

skip-grams
We’ve measured similarity with cosine distance before and we know it can be
treated as ‘normalized scalar product’; we want a similar thing here:

...but we need probabilities. Then softmax is for us

BTW, a problem: a sum of |V| scalar products in the denominator (time-consuming!)
Can be solved with negative sampling or hierarchical softmax

50

skip-grams with negative sampling
Computing one probability with |V|m multiplication and |V|(m - 1)
addition ops, and computing |V|+1 exponent function values is way too
expensive

Things can be simplified:

1. maximization of scalar products sigmoids with the true contexts,
2. minimization if scalar products sigmoids with random contexts

(this is what is called here negative samples)

51

skip-grams with negative sampling
Let’s say we have window
of size 2 -- ‘positive’ contexts

we want to increase this

k = 2 means the fraction
of ‘negative’ contexts is 1:2

we want to decrease this
52

skip-grams with negative sampling
Let’s write down the error for every word-context pair

This is not a SoftMax, but it works

53

Neural network-like view

Training with backpropagation
(BackProp)

(see tutorial или one more)

54

http://mccormickml.com/assets/word2vec/Alex_Minnaar_Word2Vec_Tutorial_Part_I_The_Skip-Gram_Model.pdf
http://alexminnaar.com/deep-learning-basics-neural-networks-backpropagation-and-stochastic-gradient-descent.html

Neural network-like view

55

Connection with matrix factorization

It is proved that when skip-gram reaches optimumn the following holds:

Which implies that word2vec is an implicit matrix factorization of the sparse PMI
word-context matrix!

But still it works better. Why?

Levy, O. and Goldberg, Y. Neural word embedding as implicit matrix factorization. In NIPS 14, pp. 2177– 2185. 56

Tools
Many open implementations, mainstream ones are

● gensim
● word2vec (от Google)
● GloVE (Stanford)
● fastText (FacebookAIResearch)
● implementations in popular NN frameworks

Pretrained vectors for different languages, e.g.

● RusVectores
● Not sure if this list is complete and/or good

(however, you can always google vectors for your language of interest) 57

http://rusvectores.org/ru/
https://github.com/Hironsan/awesome-embedding-models

Datasets
For English

WordSim-353 - 353 noun pairs with ‘similarity scores’ estimates from 0 to 10
SimLex-999 - similar task with different parts-of-speech + synonymy is important
TOEFL dataset - 80 quizzes: a word + four more, the task is to choose a synonym
Also there are datasets where contexts are also available

For Russian

Translations of standard datasets + thesauri data
https://github.com/nlpub/russe-evaluation

58

https://github.com/nlpub/russe-evaluation

Also see
Other popular vector representations

Glove: J. Pennington, R. Socher, C. Manning. Global Vectors for Word Representation EMNLP2014
fastText: P. Bojanowski, E.Grave, A. Joulin,T. Mikolov. Enriching word vectors with subword information,

2016.

Text representations

doc2vec: Le Q., Mikolov T. Distributed representations of sentences and documents // ICML-14

Handling polysemy:

AdaGram: S. Bartunov, D. Kondrashkin, A. Osokin, D. Vetrov. Breaking Sticks and Ambiguities
with Adaptive Skip-gram. International Conference on Artificial Intelligence and Statistics (AISTATS) 2016.

And many more...
59

Used/recommended materials

1. Martin/Jurafsky, Ch. 15
2. Yoav Goldberg: word embeddings what, how and whither
3. Papers on slides
4. Valentin Malykh from ODS/iPavlov on w2v
5. A very cool explanation of what word2vec is
6. Wikipedia

60

https://web.stanford.edu/~jurafsky/slp3/15.pdf
https://www.slideshare.net/hustwj/word-embeddings-what-how-and-whither
https://habrahabr.ru/company/ods/blog/329410/
http://mccormickml.com/assets/word2vec/Alex_Minnaar_Word2Vec_Tutorial_Part_I_The_Skip-Gram_Model.pdf

Vector semantics
Anton Alekseev,
Steklov Mathematical Institute in St Petersburg

NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Many thanks to Denis Kirjanov for words of advice

mailto:anton.m.alexeyev+itmo@gmail.com

On entropy of sequences
and its connection with perplexity

please see Martin/Jarfsky ed.3 4.7
https://web.stanford.edu/~jurafsky/slp3/4.pdf

additional slides on that are in Russian

62

https://web.stanford.edu/~jurafsky/slp3/4.pdf

63

64

Стационарность стохастического процесса
Стохастический процесс называется стационарным, если
вероятности последовательностей инвариантны относительно сдвигов
позиций во времени

Для естественного языка это, очевидно, не так, но иногда в рамках
моделей мы можем себе позволить такое приближение

65

Википедия

Эргодический стационарный стохастический процесс

В. Д. Колесник, Г. Ш. Полтырев
“Курс теории информации”

66

Википедия

Ответы Mail.RU

67

68

