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1. Clustering
2. Finding similar items

a. Task and motivation
b. Document as a set of shingles
c. MinHash: compressed document representation
d. A look at LSH

3. Topic modeling (in a fast pace)
a. Task and motivation
b. Matrix factorization as a topic model
c. Probabilistic topic modeling

i. pLSA
ii. LDA
iii. ARTM

d. Topic modeling quality evaluation 2



Similar objects detection (duplicate detection)
Task examples

1. Webpages with almost the same content on a search result page
(e.g. mirrors, same articles published on different websites); 
why show user essentially the same objects?

2. Reviews on objects (goods, organizations, places,...), collected from all over the 
Internet. Reasons why there are many duplicate reviews: spam, users’ revenge, 
platforms stealing reviews from each other, etc.

That is, we need methods to detect ‘copy and paste’ case, where extra symbols, 
paragraphs or words may be inserted. This time we don’t care about the meaning of the 
text.
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Similar texts in a big collection problem
Yeah, Big Data, we’ll consider the case when

● the document collection is large, texts may be long — 
RAM will never be enough;

● fragments of documents can be just parts of other 
documents, the match is inexact;

● we can’t build a complete matrix of distances between all 
pairs of texts due to the dataset size.
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Approach
Suggest

1) a way to represent documents as sets
(we have suitable similarity measures for sets)

2) a way to build signatures (representations of lower dimensionality) 
of these sets so that the similar sets have similar signatures

3) a way to hash signatures so that similar signatures have ‘hash function 
values close to each other’
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Shingles algorithm
k-shingle — a sequence of k consecutive tokens in the test (character of word n-gram). 
Let’s use all document’s shingles as its set representation.

Then we can take Jaccard distance as 
a measure of similarity

D = “azart azara”    Sh(D) = { az, za, ar, rt, t_, _a, ra }

Sometimes multisets are used:
Sh’(D) = { az x 2, za x 2, ar x 2, rt, t_, _a, ra }

From now on, we will be talking about shingles = character n-grams

U. Manber, “Finding similar files in a large file system,” Proc. USENIX Conference, pp. 1–10, 1994.
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How to choose k?
Very important but the answer is (as always) — ‘it depends on the task’

- With character shingles of k = 1 all texts 
will have exactly the same signatures :) 

- As we are looking for inexact duplicates (where only long non-breaking 
substrings of the text can be switched with each other), which are not just 
documents with similar lexics or topics, one should take longer shingles

for short documents (e.g., emails)  — k = 5
for long documents (articles) — k = 9..10
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Shingles are too many
Suppose there are 27 possible characters in out texts, then 
the number of all possible 9-shingles is 279

Evident enough, we’ll never see most of them in the texts

Trick: let’s hash every shingle => map into set 0..232-1 (int, 4 bytes)

Every document will be represented as a set of hashes:

D = “azart azara”
Sh(D) = { az, za, ar, rt, t_, _a, ra }
hSh(D) = { 2, 8, 12, 4985, 11, 9800, 0 }

Provided that we have a reasonable hash function, collisions (two different 
objects having the same hash value) don’t have much impact 9



So “signature = a set of integers”...
Suppose we have N = 1 million documents, now we want to 
find all similar ones, using the Jaccard distance

N (N - 1) / 2 = 5 • 1011 

One day is 3600 • 24 = 86400 seconds
Suppose we can do, 1’000’000 set comparisons per second

> 5,5 days

We have to do something about it!
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MinHashing: bit vectors
Imagine that we have a sparse ‘shingle-document’ matrix; a 
bit per every shingle in every column

column1 AND column2 = intersection
column1 OR column2 = union

We want to hash COLUMNS so that
with high probability

sim(c1, c2) is high ⇔ h(c1) = h(c2)
sim(c1, c2) is low ⇔ h(c1) <> h(c2)

A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher, “Min-wise independent permutations,” ACM Symposium on Theory of Computing, pp. 327–336, 1998.
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What is MinHashing?

For every column (that is, a document) 
we write down which index hits 
non-zero first (this is minhash)

Then we do so for several 
permutations of the rows

The fraction of matching values is 
used as documents similarity

http://www.mmds.org/mmds/v2.1/ch03-lsh.pdf 13
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http://www.mmds.org/mmds/v2.1/ch03-lsh.pdf


MinHashing: why this approach works
Statement: the probability of minhashes matching for a random permutation of two 
sets’ elements is equal to Jaccard distance between those sets 

1. Jaccard coefficient — A / (A + B + C)

2. Let’s consider a random permutation of two sets

We go down one column, then the probability 
of hitting the situation “1-1” (А) before “1-0” (B) or “0-1” (C) 
equals A / (A+B+C)

And in case “1-0” (“0-1”) we know for sure that the 
minhash value of the second set is not equal to the one of the first set 14



MinHashing: how it is actually done
Problem 1: that probability estimate has large variance, we need a more precise one
...so we can take a bunch of permutations (the greater the number, the better) and 
compute the fraction of matches
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MinHashing: how it is actually done
Problem 2: permutations take a while to generate!
...to deal with that one may take hash functions, that generate permutations

...then traverse all rows and 
1) compute hash-permutations,
2) for each column, having met 1, update minimal values 

of indices for the signature
16



Interim results
1) documents as shingles sets
2) representing sets as signatures of small size allowing 

to estimate their similarity (with some probability)

One can try to invent something hacky for searching the 
best-matching ones (in terms of matching vector values) from 
scratch, but the signatures are not that short, so this may be hard

However, there is a well-known and an effective method for that!
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LSH: Locality-Sensitive Hashing
We want to find all pairs of sets, Jaccard distance between 
which is no larger than s

Core idea
hash all columns of a signature matrix into many buckets; 
documents falling into one buckets are candidates for 
checking whether the Jaccard distance is small between all 
of them
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LSH: splitting signatures into b parts
...then hashing each part, 
throwing into k buckets 
(the larger k, the better)

Signatures, hashes of which fell 
into the same bucket more than 
once, are good duplicates 
candidates

b (r) -- tuneable paremeters
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For more on LSH please see (free btw)
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Also see
SimHash 
Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting 
near-duplicates for web crawling. In Proceedings of the 16th international 
conference on World Wide Web (WWW '07). ACM, New York, NY, USA, 141-150.

(algorithm is described well here: M. Charikar. Similarity estimation techniques 
from rounding algorithms. In Proc. 34th Annual Symposium on Theory of 
Computing (STOC2002), pages 380–388, 2002.)

Rumours say that some time ago Google used Simhash for web pages, and 
MinHash+LSH — for Google News
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Tools & data
instruments

1. https://github.com/scrapinghub/python-simhash 
2. Looks promising: https://github.com/ekzhu/datasketch 
3. Just google it: custom implementations of MinHash, LSH, etc.

datasets

1. Wikipedia revisions
(see New Issues in Near-duplicate Detection Martin Potthast and Benno Stein)

2. Webdata+xml + linuxdocs
(see A Scalable System for Identifying Co-Derivative Documents Yaniv Bernstein Justin Zobel)

3. 8B documents
(but you have to be Google:))

4. Just google, there are more

They created Scrapy
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Used/recommended materials
1. Mining Massive Datasets,  Chapter 3.
2. References on slides above
3. Wikipedia
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