
High-level structure in texts
as sets of words - III
Anton Alekseev,
Steklov Mathematical Institute in St Petersburg

NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Plan
1. Clustering
2. Finding similar items

a. Task and motivation
b. Document as a set of shingles
c. MinHash: compressed document representation
d. A look at LSH

3. Topic modeling (in a fast pace)
a. Task and motivation
b. Matrix factorization as a topic model
c. Probabilistic topic modeling

i. pLSA
ii. LDA
iii. ARTM

d. Topic modeling quality evaluation 2

Similar objects detection (duplicate detection)
Task examples

1. Webpages with almost the same content on a search result page
(e.g. mirrors, same articles published on different websites);
why show user essentially the same objects?

2. Reviews on objects (goods, organizations, places,...), collected from all over the
Internet. Reasons why there are many duplicate reviews: spam, users’ revenge,
platforms stealing reviews from each other, etc.

That is, we need methods to detect ‘copy and paste’ case, where extra symbols,
paragraphs or words may be inserted. This time we don’t care about the meaning of the
text.

3

Similar texts in a big collection problem
Yeah, Big Data, we’ll consider the case when

● the document collection is large, texts may be long —
RAM will never be enough;

● fragments of documents can be just parts of other
documents, the match is inexact;

● we can’t build a complete matrix of distances between all
pairs of texts due to the dataset size.

4

Approach
Suggest

1) a way to represent documents as sets
(we have suitable similarity measures for sets)

2) a way to build signatures (representations of lower dimensionality)
of these sets so that the similar sets have similar signatures

3) a way to hash signatures so that similar signatures have ‘hash function
values close to each other’

5

Plan
1. Clustering
2. Finding similar items

a. Task and motivation
b. Document as a set of shingles
c. MinHash: compressed document representation
d. A look at LSH

3. Topic modeling (in a fast pace)
a. Task and motivation
b. Matrix factorization as a topic model
c. Probabilistic topic modeling

i. pLSA
ii. LDA
iii. ARTM

d. Topic modeling quality evaluation 6

Shingles algorithm
k-shingle — a sequence of k consecutive tokens in the test (character of word n-gram).
Let’s use all document’s shingles as its set representation.

Then we can take Jaccard distance as
a measure of similarity

D = “azart azara” Sh(D) = { az, za, ar, rt, t_, _a, ra }

Sometimes multisets are used:
Sh’(D) = { az x 2, za x 2, ar x 2, rt, t_, _a, ra }

From now on, we will be talking about shingles = character n-grams

U. Manber, “Finding similar files in a large file system,” Proc. USENIX Conference, pp. 1–10, 1994.
7

How to choose k?
Very important but the answer is (as always) — ‘it depends on the task’

- With character shingles of k = 1 all texts
will have exactly the same signatures :)

- As we are looking for inexact duplicates (where only long non-breaking
substrings of the text can be switched with each other), which are not just
documents with similar lexics or topics, one should take longer shingles

for short documents (e.g., emails) — k = 5
for long documents (articles) — k = 9..10

8

Shingles are too many
Suppose there are 27 possible characters in out texts, then
the number of all possible 9-shingles is 279

Evident enough, we’ll never see most of them in the texts

Trick: let’s hash every shingle => map into set 0..232-1 (int, 4 bytes)

Every document will be represented as a set of hashes:

D = “azart azara”
Sh(D) = { az, za, ar, rt, t_, _a, ra }
hSh(D) = { 2, 8, 12, 4985, 11, 9800, 0 }

Provided that we have a reasonable hash function, collisions (two different
objects having the same hash value) don’t have much impact 9

So “signature = a set of integers”...
Suppose we have N = 1 million documents, now we want to
find all similar ones, using the Jaccard distance

N (N - 1) / 2 = 5 • 1011

One day is 3600 • 24 = 86400 seconds
Suppose we can do, 1’000’000 set comparisons per second

> 5,5 days

We have to do something about it!

10

Plan
1. Clustering
2. Finding similar items

a. Task and motivation
b. Document as a set of shingles
c. MinHash: compressed document representation
d. A look at LSH

3. Topic modeling (in a fast pace)
a. Task and motivation
b. Matrix factorization as a topic model
c. Probabilistic topic modeling

i. pLSA
ii. LDA
iii. ARTM

d. Topic modeling quality evaluation 11

MinHashing: bit vectors
Imagine that we have a sparse ‘shingle-document’ matrix; a
bit per every shingle in every column

column1 AND column2 = intersection
column1 OR column2 = union

We want to hash COLUMNS so that
with high probability

sim(c1, c2) is high ⇔ h(c1) = h(c2)
sim(c1, c2) is low ⇔ h(c1) <> h(c2)

A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher, “Min-wise independent permutations,” ACM Symposium on Theory of Computing, pp. 327–336, 1998.

ht
tp

://
w

w
w

.m
m

ds
.o

rg
/m

m
ds

/v
2.

1/
ch

03
-ls

h.
pd

f

12

What is MinHashing?

For every column (that is, a document)
we write down which index hits
non-zero first (this is minhash)

Then we do so for several
permutations of the rows

The fraction of matching values is
used as documents similarity

http://www.mmds.org/mmds/v2.1/ch03-lsh.pdf 13

zero!

non-zero!

start

http://www.mmds.org/mmds/v2.1/ch03-lsh.pdf

MinHashing: why this approach works
Statement: the probability of minhashes matching for a random permutation of two
sets’ elements is equal to Jaccard distance between those sets

1. Jaccard coefficient — A / (A + B + C)

2. Let’s consider a random permutation of two sets

We go down one column, then the probability
of hitting the situation “1-1” (А) before “1-0” (B) or “0-1” (C)
equals A / (A+B+C)

And in case “1-0” (“0-1”) we know for sure that the
minhash value of the second set is not equal to the one of the first set 14

MinHashing: how it is actually done
Problem 1: that probability estimate has large variance, we need a more precise one
...so we can take a bunch of permutations (the greater the number, the better) and
compute the fraction of matches

15

MinHashing: how it is actually done
Problem 2: permutations take a while to generate!
...to deal with that one may take hash functions, that generate permutations

...then traverse all rows and
1) compute hash-permutations,
2) for each column, having met 1, update minimal values

of indices for the signature
16

Interim results
1) documents as shingles sets
2) representing sets as signatures of small size allowing

to estimate their similarity (with some probability)

One can try to invent something hacky for searching the
best-matching ones (in terms of matching vector values) from
scratch, but the signatures are not that short, so this may be hard

However, there is a well-known and an effective method for that!

17

Plan
1. Clustering
2. Finding similar items

a. Task and motivation
b. Document as a set of shingles
c. MinHash: compressed document representation
d. A look at LSH

3. Topic modeling (in a fast pace)
a. Task and motivation
b. Matrix factorization as a topic model
c. Probabilistic topic modeling

i. pLSA
ii. LDA
iii. ARTM

d. Topic modeling quality evaluation 18

LSH: Locality-Sensitive Hashing
We want to find all pairs of sets, Jaccard distance between
which is no larger than s

Core idea
hash all columns of a signature matrix into many buckets;
documents falling into one buckets are candidates for
checking whether the Jaccard distance is small between all
of them

19

LSH: splitting signatures into b parts
...then hashing each part,
throwing into k buckets
(the larger k, the better)

Signatures, hashes of which fell
into the same bucket more than
once, are good duplicates
candidates

b (r) -- tuneable paremeters

20

For more on LSH please see (free btw)

21

Also see
SimHash
Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting
near-duplicates for web crawling. In Proceedings of the 16th international
conference on World Wide Web (WWW '07). ACM, New York, NY, USA, 141-150.

(algorithm is described well here: M. Charikar. Similarity estimation techniques
from rounding algorithms. In Proc. 34th Annual Symposium on Theory of
Computing (STOC2002), pages 380–388, 2002.)

Rumours say that some time ago Google used Simhash for web pages, and
MinHash+LSH — for Google News

22

Tools & data
instruments

1. https://github.com/scrapinghub/python-simhash
2. Looks promising: https://github.com/ekzhu/datasketch
3. Just google it: custom implementations of MinHash, LSH, etc.

datasets

1. Wikipedia revisions
(see New Issues in Near-duplicate Detection Martin Potthast and Benno Stein)

2. Webdata+xml + linuxdocs
(see A Scalable System for Identifying Co-Derivative Documents Yaniv Bernstein Justin Zobel)

3. 8B documents
(but you have to be Google:))

4. Just google, there are more

They created Scrapy

23

https://github.com/scrapinghub/python-simhash
https://github.com/ekzhu/datasketch

Used/recommended materials
1. Mining Massive Datasets, Chapter 3.
2. References on slides above
3. Wikipedia

24

http://www.mmds.org/

High-level structure in texts
as sets of words - III
Anton Alekseev,
Steklov Mathematical Institute in St Petersburg

NRU ITMO, St Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Thanks for help in slides preparation go to Denis Kiryanov and Andrey Filchenkov

mailto:anton.m.alexeyev+itmo@gmail.com

