
Tagging
(sequence labeling for NLP)

Anton Alekseev
Steklov Mathematical Institute in St Petersburg

ITMO University, St. Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

mailto:anton.m.alexeyev+itmo@gmail.com

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

Motivation (very general)
We don’t always have to work with iid data (independent identically distributed),
which was the case with text classification, for example

Sometimes items’ order is important and the context should be taken
into account

life without dependences life without dependences

https://www.youtube.com/watch?v=9yl4XGp5OEg

https://www.youtube.com/watch?v=9yl4XGp5OEg

Motivation: PoS tagging
Part-of-speech tagging
(aka POS tagging, word-category tagging, ...)
matching words and parts-of-speech in the text

We have already seen morphological analyzers that
can offer several suggestions of parts-of-speech
per word

Hence, most importantly -- PoS-tagging is the
disambiguation task

4

Motivation: PoS tagging
Why tag parts of speech?

Examples

- helps to extract keyphrases + allows using
patterns in information extraction
(very widely spread)

- PoS as a replacement for rare terms help to
generalize

- useful as a first step in syntax analysis

5

“The vertices
added to the
graph can be
restricted with
syntactic filters,
which select
only lexical
units of a
certain part of
speech...”
TextRank paper

Extracting Product Features and Opinion Words Using Pattern
Knowledge in Customer Reviews
Su Su Htay and Khin Thidar Lynn, 2013

https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf

Parts-of-speech

PoS

1. Closed classes:
they would not change

2. Open classes: PoS classes, where
new words appear once in a while

There are languages with great difficulties in determining parts-of-speech
6

Nouns, verbs, adjectives, adverbs, ...

Parts-of-speech
There may be several tagsets for PoS, e.g.
Penn Treebank has 45 tags

7

Motivation: NER
Named entity recognition
(aka NER, entity identification, entity chunking and entity extraction) --
detection and classification of real-world named objects mentions in the texts

Examples:

- search and aggregation of companies’ and persons’ names etc.
for further analysis and easy access to information: ‘who is the most
popular’, ‘who today’s news are about’

- as a preprocessing stage for more complex tasks,
e.g. relation extraction

8

NER, tagsets types
● Oldies can rock: e.g. manually created grammars can achieve amazing precision,

however, they usually have low recall and require a lot of labour of linguists

● A few tagset types, e.g. we can start the name annotation with the tag B_xxx,
and give the rest I_xxx. Those that don’t make up the name have O (BIO-markup)

● Replace xxx with your class name; this way one can extract entities of different
types

9

http://nlp.stanford.edu:8080/ner/process

http://nlp.stanford.edu:8080/ner/process

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

“Denial of responsibility”
PoS-tagging and NER can be solved with many different
approaches
(rules, incl. grammars, vocabularies, gazetteers, etc.)

We will only look at these tasks as machine learning problems

sequence learning < structured learning

To justify this, I promise that you’ll find these
approaches useful in many domains
other than NLP

11

Generalization of the tasks
We have the training set

1. A sequence of observations (e.g. words)
o1, o2, o3, …
Всё смешалось в доме Облонских

2. A sequence of states (parts of speech, borders of words)
q’1, q’2, q’3, …
Всё/O смешалось/O в/O доме/O Облонских/B

Build a model, using which we can

- decode the most probable sequence of states given a sequence of observations
- *estimate the probability of tagging

12

Everything was in confusion in the Oblonskys' house

Everything/O was/O in/O confusion/O in/O the/O Oblonskys'/B house/O

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

Simple idea: many classifiers
Train a classifier on features built based on the features of nearby words and
predict labels one by one?

1. Yeah, can be done, try it out in your homework :)

2. Problem the method doesn’t take neighbours labels into account

14

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

REMINDER: Markov chain
Is set by a stochastic transition matrix
Example. Events: vowel (v), consonant (c), whitespace/punctuation (s)
(probabilities in the example are fake)

DEMO: ugly self-promotion: http://antonalexeev.hop.ru/markov/index.html

v c s

v 0.2 0.5 0.3

c 0.45 0.35 0.2

s 0.6 0.4 0.0
V S

C

0.2

0.45

0.5

0.35

0.2

0.4

0.6

0.3

Ptrans =

http://antonalexeev.hop.ru/markov/index.html

Markov chains
Markov chain actually sets a weighted finite automaton, with conditional probabilities as transition weights

Stochastic process set by it generates the trajectory of states, allowing to estimate those transition weights.
We have already done this! (e.g. language modeling)

Now let us imagine we don’t see the true states of the process.
We can only see the observations that depend on them.

17

sun wind raining

postman
carries an umbrella

postman comes
without an umbrella

postman
carries an umbrella

Hidden Markov model
A set of all N possible states
Transition probabilities matrix
(rows sum to 1)

A sequence of T observations
from the set V = v1,...vv

A matrix of emission probabilities:
observation ot from state qi

Initial and terminal states

18

Probabilities to
be in states 1..N
before the first
step of the
process

Hidden Markov model
We assume that the object we are modeling can be approximated
with a generative process:

1) throw the dice for the first state, let’s say we get state i
2) for state i using A we generate observation bk
3) for state i we generate the next state j
4) i := j and goto (2) until we reach terminal state qF

19

qi qj

bk

Task 1: estimate the probability of the sequence
Let’s say we have HMM(A, B).
What is the probability of O: p(O|HMM(A,B))?

Imagine we know the state sequence, then

but we don’t know it, but we know the definition of the conditional probability

and then

20

Task 1: estimate the probability of the sequence
Sad: traversing all possible state sequences ~ O(NT)

Good news: can be computed with dynamic programming ~ O(N2T):
For every moment of time t we can estimate the probability of observation
sequence o1...ot, if we know the probability of the sequence o1...ot-1

We can compute this

Based on all possible previous states

21

Task 1: estimate the probability of the sequence
Filling the matrix, the
results are computed
using the last row

aka
the forward algorithm

22

Task 2: decoding
...which is the recovery of the most probable sequence of states given the
sequence of observations and the model HMM(A,B)

Naive algorithm: iterate through all possible states sequences, estimate their
probabilities given data o1,...,oT using the forward-algorithm

Why naive? We have all the methods, let’s just compute it!

23

Task 2: decoding
...which is the recovery of the most probable sequence of states given the
sequence of observations and the model HMM(A,B)

Naive algorithm: iterate through all possible states sequences, estimate their
probabilities given data o1,...,oT using the forward-algorithm

...Which means combinatorial complexity!

As with forward algorithm, dynamic programming comes for help: let’s build a
matrix, where at step t the cell j will be filled with the probability of the process to
be in the state j after going through the most probable state sequence
q0, q2, …, qt-1

24

Task 2: decoding, Viterbi algorithm
Andrew Viterby (b. 1935) - American engineer of Italian origin, co-founder of Qualcomm

Idea: for every step t and for every state j we recursively compute the probability of the process to be in
the state j assuming we have come to it using the most probable ‘states path’ q0, q2, …, qt-1 given
observations o1,...,ot

Which can be rewritten as

we take the probabilities for the previous step, multiply them by the transition-to-the-current-state
probability and the current observation emission probability.

Can easily prove this approach is valid using mathematical induction: just write down vt(j) and prove that
this is the largest possible probability (chain rule + cond.independence + moving constant values)

25

Task 2: Viterbi decoding
Saving both maximums and
argmaxes: to determine which
states we’ve come from at each
step t

Having estimated the
probabilities on the last step,
we take the cell with max
probability, and go in the
reverse direction using the
backpointers (argmaxes)

26

Task 3: training

When we don’t have data annotated with tags completely, we can use algorithm
(aka Forward-Backward aka Baum-Welch algorithm)

But POS, BIO-NER are given and set in our case

Hence we can simply estimate these probabilities as counts

27

Computed
on
Wall Street
Journal
corpus

Hidden Markov models
Once again, how it works:

1. Annotated corpus:
“words” — observations
tags — states

2. Estimation of conditional probabilities of
transition and generation

3. [probabilities smoothing]
4. Running Viterbi algorithm on the incoming

previously unseen sequence and getting
tags

28

Hidden Markov models: discussion

29
http://lxmls.it.pt/2015/strlearn.pdf

http://lxmls.it.pt/2015/strlearn.pdf

Hidden Markov models: discussion
1. A simple sequence modeling technique

2. Can easily be generalized if we want to take larger context into
account (for NLP tasks such models are used, the big-O(nx)
gradually grows, x ~ the size of context)

3. For practical use, many more complex modifications were developed

Hidden Markov models are not useful when we want to take arbitrary
contextual features, there are other richer models for that

30

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

Linear factorized models

the goal is to find tags so that the sum of scalar products of weights and features would be
max (when summing over all elements of the sequence)

Viterbi helps again: let’s set

then we shall simply do this

32
http://lxmls.it.pt/2015/strlearn.pdf

Structured perceptron
A linear model; training: updating weights based on errors when predicting
in online fashion -- as in one-layer perceptron

33Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1–8.

Viterbi is hiding here

Updating the
weights if
predictions are
wrong Usually the updates are

multiplied by the
learning rate < 1

http://lxmls.it.pt/2015/strlearn.pdf

Averaged structured perceptron
When updates are averaged, the results are way better

34
Идея усреднения параметров отсюда: Yoav Freund and Robert Schapire. 1999. Large margin classification using the perceptron algorithm. Machine Learning, 3(37):277–296.
Применение здесь же: Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1–8.

Structured perceptron: discussion
● Arbitrary features that have no constraints that HMM features do have

● Is trained in online fashion, and convergence is fast (sometimes < 10
iterations)

● Averaged version works WAY BETTER than the standard one

● Shows results compatible to CRF and structured SVM

35

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

Conditional Random Fields (CRF)

1) can be called a ‘logistic regression for sequences’
2) ‘discriminative sibling’ of HMM

Let’s rewrite joint distribution of words and tags describing HMM

mu and theta are log-probabilities of transition and generation

37Lafferty, J., McCallum, A., Pereira, F. (2001).
"Conditional random fields: Probabilistic models for segmenting and labeling sequence data". Proc. 18th International Conf. on Machine Learning. Morgan Kaufmann. pp. 282–289.

CRF
Generalization and rewriting:

then

38

CRF: definition
a linear-chain conditional random field is a distribution set as

where theta are real-valued k-dimensional vectors of parameters
and f are feature functions 39

CRF: discussion
● popular in language processing as well as in bioinformatics,

image analysis, etc.

● was designed as a (and actually is) a probabilistic graphical model

● as well as structured perceptron, CRF can ‘see’ the whole sequence for
prediction, so one can easily set arbitrary features
(using parts of the words, etc.)

● has effective implementations and lots of extensions

40

What else?
● sequence learning — is certainly a task for

neural architectures for sequential data!

(current SOTA pretty much everywhere is
close to the results achieved with
bi-LSTM-CRF)

Stay tuned:
https://aclweb.org/aclwiki/State_of_the_art

41

https://aclweb.org/aclwiki/State_of_the_art

Plan
1. Motivation
2. Approaches we will discuss
3. Methods

a. Classifiers
b. Hidden Markov models
c. Structured perceptron
d. (a lil bit of) Conditional Random Fields

4. Tools and data

Data
● POS-tagging

○ Conference tasks tracks,
e.g. CoNLL-2000 Shared Task

○ Annotated datasets for 40+ languages, the project called
Universal Dependencies: http://universaldependencies.org/

● NER

○ NER data on Technion site:
http://www.cs.technion.ac.il/~gabr/resources/data/ne_datasets.html

For different tasks for Russian language there are datasets on the conference Dialog site:
http://www.dialog-21.ru/en/evaluation/ 43

http://universaldependencies.org/
http://www.cs.technion.ac.il/~gabr/resources/data/ne_datasets.html
http://www.dialog-21.ru/en/evaluation/

Tools
● hmmlearn

(unsupervised HMM, sklearn-like API)
● PyStruct

(by one of sklearn major maintainers)
● CRF++ and CRFSuite

(are said to be blazing fast; check if still maintained)
● seqlearn

(seems to be abandoned by maintainers, though API is cool)
● MALLET

(+GRMM)
● Alchemy is also an option

44

https://github.com/hmmlearn/hmmlearn
https://pystruct.github.io/
https://taku910.github.io/crfpp/
http://www.chokkan.org/software/crfsuite/
https://github.com/larsmans/seqlearn
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/grmm/
http://alchemy.cs.washington.edu/

Used / recommended literature
1. Martin/Jurafsky, chapters 9-10, ed. 3
2. Rabiner’s tutorial on HMM
3. Noah Smith’s lecture slides on HMM etc. from LxMLS
4. Xavier Carreras lecture slides on structured prediction from LxMLS

(hot! short description of the models, many links)
5. Introduction into CRF by Statton and McCallum (MALLET author)
6. Wikipedia

45

https://web.stanford.edu/~jurafsky/slp3/
http://ieeexplore.ieee.org/document/18626/
https://homes.cs.washington.edu/~nasmith/slides/lxmls.7-22-11.pdf
http://lxmls.it.pt/2015/strlearn.pdf
https://arxiv.org/PS_cache/arxiv/pdf/1011/1011.4088v1.pdf

Tagging
(sequence labeling for NLP)

Anton Alekseev
Steklov Mathematical Institute in St Petersburg

ITMO University, St. Petersburg, 2019
anton.m.alexeyev+itmo@gmail.com

Thanks for helping me with the slides go to Denis Kiryanov

mailto:anton.m.alexeyev+itmo@gmail.com

