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Few word about me

| am an Applied Research scientist at VK.com

e Part-time Research Scientist at iPavlov
e Worked at Yandex
e Graduated from Moscow Institute of Physics and Technology

 Recently defended a PhD thesis
“Noise Robustness in Various NLP Tasks”



Overview of today

e From RNNs to CNNs

e CNN Variant 1:  Simple single layer
e Application: Sentence classification
e More details and tricks

e Evaluation
o Comparison between sentence models

e CNNVariant2: Complex multilayer



FromRNNs to CNNs
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FromRNNs to CNNs

e Recursive neural nets
require a parser to get
tree structure

e Recurrent neural nets
cannot capture phrases
without prefix context
And often capture too much
of last words in final vector
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FromRNNs to CNNs

RNN: Getcompositional vectorsfor grammatical phrases only

e CNN: What if we compute vectors for every possible phrase?
e Example: “the country of my birth” computes vectorsfor:

* the country, country of, of my, my birth, the country of,

Country of my, of my birth, the country of my, country of my
birth

e Regardlessof whether it is grammatical
e Wouldn’t need parser
* Not very linguistically or cognitively plausible



What is convolution anyway?

e 1d discrete convolution generally:

(fxg)lnl= D fln—mlglm].

m=—2M
e Convolution is great to extractfeatures from images

* 2d example 1/1/1(0(0
* Yellow shows filter weights |04 1,/1/1(0 4
e Green shows input 0,/0,1)1]|1
o(o|1|1]|0
0(1|1|0]|0
Convolved
Image

Feature



From RNNs to CNNs

e First layer: compute all bigramvectors

country  of my birth

e Same computation as in RNN butfor every pair
pz‘u&mnh(W[ ! ]—|—b>
C2

e This can be interpreted as a convolution over the word vectors




FromRNNs to CNNs

e Now multiple options to compute higher layers.
 First option (simpleto understand butnotnecessarilybest)

e Just repeat with different weights:

p = tanh (W<2> [ i ] +b)
C2

2.3
3.6

the country my birth of




FromRNNs to CNNs

e First option (simple to understand but not necessarily best)

the country  of my birth



FromRNNs to CNNs

e First option (simple to understand but not necessarily best)

the country  of my birth



Single Layer CNN

* Asimple variant usingone convolutional layer and pooling

 Based on Collobertand Weston (2011) and Kim (2014)
“Convolutional Neural Networks for Sentence Classification”

e Word vectors: x, ¢ R¥

e Sentence: X1, =X1 P X2P...D X, (vectors concatenated)
* Concatenation of words inrange: X;.; 4 ;

e Convolutional filter: w € R (goes over window of h words)
e Could be 2 (as before) higher, e.g. 3:
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Single layer CNN

* Filter wis appliedto all possible windows (concatenated vectors)
e Sentence: Xiip =X1DxX2D ... DXy,
* All possible windows of length h: {X1:h, X2:h 415+ -y Xn—htlm})

* Resultisafeature map: ¢ = [c1,¢2,...,Ch_phi1] € RP—h+1
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Single layer CNN

Filter wis appliedto all possible windows (concatenated vectors)
e Sentence: X1, =X1 Px20D ... DXy,

All possible windows of length h: {X1:hs X2ht1, -+ s Xn—htlm})

* Resultisa feature map: ¢ = [c1,¢2,...,Cn_pt1] € I

p ... k

(0.4 2.1 a4 23 .
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Single layer CNN: Pooling layer

* New buildingblock: Pooling
* In particular: max-over-time poolinglayer

* |dea: capture most important activation (maximum over time)
e From featuremap ¢ = [c1,C2,...,Ch_pt1] € RPAH]

* Pooledsingle number: ¢ = max{c}

e But we want more features!



Solution: Multiple filters

* Use multiplefilter weights w

e Useful to have different window sizes h

* Because of max pooling ¢ = max{c}, length of cirrelevant

c=|[c1,C2,...,Cp_pi1] € RPIFI

* So we can have some filters that look at unigrams, bigrams, tri-
grams, 4-grams, etc.



Multi-channel idea

* |nitialize with pre-trained word vectors (e.g. word2vec)

Start with two copies

e Backprop into only one set, keep other “static”

Both channels are added to ¢ before max-pooling

Richard Socher 5/12/16



Classification after one CNN layer

* First one convolution, followed by one max-pooling

)

* To obtainfinal feature vector: z = [é1,..., ¢
(assuming m filters w)

e Simple final softmax layer y = softmax (W(S)z + b)



Figure from Kim (2014)
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Figure 1: Model architecture with two channels for an example sentence.

n words (possibly zero padded) and each word vector has k
dimensions



Tricks to make it workbetter: Dropout

e |dea: randomly mask/dropout/set to 0 some of thefeature
weights z

e Create masking vector r of Bernoulli random variables with
probabilityp (a hyperparameter) of being 1

e Delete features during training:
y = softmax (W(S)(r oz)+ b)

e Reasoning:Prevents co-adaptation (overfitting to seeing specific
featureconstellations)



Tricks to make it workbetter: Dropout

y = softmax (W(S) (roz) ¢ b)

e At training time, gradients arebackpropagated only through
those elements of z vector for which ris1

e At test time, there is no dropout, so feature vectors z are larger.
 Hence, we scale final vector by Bernoulli probability p

WS = o)

e Kim (2014)reports 2- 4% improved accuracy and ability to use
very large networks without overfitting



Another regularization trick

e Somewhat less common

e Constrain |, norms of weight vectors of each class (row in
softmax weight W (s)) to fixed number s (also a hyper-parameter)

o If HWC(.S)II > s , then rescale it so that: \chSS)H =

Richard Socher 5/12/16



All hyperparameters in Kim (2014)

e Find hyperparameters based on dev set
e Nonlinearity: RelU

e Window filter sizes h = 34,5

e Each filter size has100 featuremaps
e Dropout p = 0.5

e L2 constraint s for rows of softmaxs = 3
e Mini batch size for SGD training: 50
e Word vectors: pre-trained with word2vec,k = 300

e During training, keep checking performance on dev set and pick
highestaccuracy weights for final evaluation



Experiments

Model MR | SST-1 | SST-2 | Sub; | TREC| CR | MPQA
CNN-rand 76.1 | 450 | 827 | 896 | 91.2 | 79.8 | 83.4
CNN-static 81.0 | 455 | 86.8 | 93.0 | 92.8 | 84.7 | 89.6
CNN-non-static 81.5| 480 | 87.2 | 934 | 93.6 | 84.3 | 89.5
CNN-multichannel 81.1 | 474 | 881 | 93.2 | 922 | 85.0 | 894
RAE (Socher et al., 2011) 77.7 | 43.2 | 824 86.4
MV-RNN (Socher et al., 2012) 79.0 | 444 | 829

RNTN (Socher et al., 2013) 45.7 | 85.4

DCNN (Kalchbrenner et al., 2014) 48.5 | 86.8 93.0

Paragraph-Vec (Le and Mikolov, 2014) 48.7 | 87.8

CCAE (Hermann and Blunsom, 2013) || 77.8 87.2
Sent-Parser (Dong et al., 2014) 79.5 86.3
NBSVM (Wang and Manning, 2012) 79.4 93.2 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 93.6 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 93.4 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 93.6 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 81.4 | 86.1
CRF-PR (Yang and Cardie, 2014) 82.7

SVMs (Silva et al., 2011) 95.0

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from



Problem with comparison?

Dropout gives 2 -4% accuracy improvement
Severalbaselines didn’'t use dropout

Still remarkable results and simple architecture!

Difference to window and RNN architectures we described in
previous lectures: pooling, many filters and dropout

ldeas canbe used in RNNs too
Tree-LSTMs  obtain better performance on sentence datasets



e Fixed tree RNNs explored in computer vision:
Socher et al (2012): “Convolutional-Recursive Deep Learning for
3D Obiject Classification”

RGB CNN Softmax Classifier Depth CNN
Label: Coffee Mug
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Lecture 1, Slide 26 Richard Socher 5/12/16



Relationship between RNNs and CNNs

CNN RNN
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Relationship between RNNs and CNNs

CNN RNN

A5 N

NN\ NN
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Relationship between RNNs and CNNs

. CNN RNN

/N
NN
NN\ NN

e Stride size flexible in CNNs, RNNs “weighted average pool”
 Tying (sharing) weights of filters inside vs across different layers
e CNN: multiple filters, additional layer type: max-pooling
e Balanced input independent structure vsinput specific tree



CNN alternatives

* Narrow vs wide convolution
AN N CAY

e Complexpooling schemes
(over sequences)
and deeper convolutional layers

(7777 _
e Kalchbrenner et al. (2014) mﬁﬁm/%‘m E’/ /;H 17 ,f/

(=7)

The cat sat on the red mat



Model comparison

e Bag of Vectors: Surprisingly good baseline for simple
classification problems. Especially if followed by a few layers!

e Window Model: Good for single word classification for
problems that do notneed wide context

e CNNs: good for classification, unclear how to incorporate phrase
level annotation (can only take a single label), need zero
padding for shorter phrases, hard to interpret, easy to
parallelize on GPUs



Model comparison

 Recursive Neural Networks: most linguistically plausible,
interpretable, provide most important phrases (for
visualization), need parse trees

e Recurrent Neural Networks: Most cognitively plausible (reading
from leftto right), notusually the highestclassification
performance but lots of improvements right now with gates
(GRUs, LSTMs, etc).

e Best butalso most complex models: Hierarchical recurrent
neural networks with attention mechanisms and additional
memory



Quasi-Recurrent Neural Network

LSTM CNN QRNN
¢ }

Lineer Convolution # Convolution #
LSTM/Linear Max-Pool | .~ ~ _~ | foPool [ ——— — — >

¥ ¥ 1
Linear Convolution _ Convolution “
LSTM/Linear Max-Pool I~ | fo-Pool |~ — — — — — >

t ] [} ]

* Parallelism computation across time:

Zi = tanh(wixt—l + W;?Xt) Z = tanh(W, x X)
f; = J(W}cxt_1 + chxt) F = O‘(Wf * X)
0 = J(wéxt_l + ngt)- 0= J(WG * X)!

* Element-wise gated recurrence for parallelism across

channels:
hy =f,oh, 1+ (1—-£) ©z,



Q-RNNs for Language Modeling

Better

Faster

Model | Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M - 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3
500 -
Emm RNN Sequence length

= 400 o Softmax 32 64 128 256 512
% 200 e 8 | 55x 88x 110x 124x 169x
g E 16 | 55 6.7x 7.8x 83x 10.8x
— 200 ': 32 | 42x 4.5x 4.9x 4.9x 6.4x
E [ E 64 | 3.0x 3.0x 3.0x 3.0x 3.7x
F 100. a 128 | 21x 19x 2.0x 2.0x 2.4x

- - - 256 | 14x  14x 1.3x 1.3x 1.3x

O -==
LSTM LSTM (cuDNN) QRNN




Q-RNNs for Sentiment Analysis

e Often better and faster o [ Time/Epoch (5)_Test Acc (%)
BSVM-bi (Wang & Manning, 2012) - 91.2
than LSTMs e i | 7
2-layer LSTM (Longpre et al., 2016) - 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) - 90.1
Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k =4 160 91.1
o -
More interpretable e !ﬁ"E — H " Hﬂ!i“ T
. ' | 3l m !
SR AR A R
cxaml RN B TR T
e Example: S| PRI | | |
P = | ILII LI | §I A L ..iJ dl l'T UM 4L
+ Initial positive review - I1I'EU AD ALY RUWUNRY 0 [ ERIIRIDN

* Review starts out positive
At 117: “not exactly a bad story”
At 158: “I recommend this movie to everyone, even if you’ve
never played the game”



Gated Convolutions

Gated Linear Unit;:

hi(X)=(X*W+b)®a(X*V +c)

. Input sentence | ~
Text The cat sat on the mat .
| Lookup Table |
E=D Q
Q
Q
Q
~ \ PaN
Convolution
=E:W+b [ | h
B=E:V+c /

Gating
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Gated Convolutions >
=—s | STM+Softmax
50 = GCNN+AdaSoftmax
E 45
5
% 40
&
35
30
0 200 400 600 800 1000
MFlops
Model Test PPL  Hardware
Sigmoid-RNN-2048 (Ji et al., 2015) 68.3 1 CPU
Interpolated KN 5-Gram (Chelba et al., 2013) 67.6 100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2014) 52.9 -
RNN-1024 + MaxEnt 9 Gram Features (Chelba et al., 2013) 51.3 24 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016) 43.7 32 GPUs
2-layer LSTM-8192-1024 (Jozefowicz et al., 2016) 30.6 32 GPUs
BIG GLSTM-G4 (Kuchaiev & Ginsburg, 2017) 23.3* 8 GPUs
LSTM-2048 (Grave et al., 2016a) 43.9 1 GPU
2-layer LSTM-2048 (Grave et al., 2016a) 39.8 1 GPU
GCNN-13 38.1 1 GPU
GCNN-14 Bottleneck 31.9 8 GPUs

Table 2. Results on the Google Billion Word test set. The GCNN outperforms the LSTMs with the same output approximation.



CNN application: Translation

P(fle)
e One of thefirst successfulneural U RE R
machine translation efforts nRaRARARARARA
e Uses CNN for encoding and R RN
RNN  for decoding S % % L & v ¥

S
e Kalchbrenner and Blunsom (2013) e
“Recurrent Continuous Translation Models”

| csSm



Convolutional Encoder

<p> Die Katze schlief ein <p> <p> Die Katze schlief ein <p>

Convolutional
Encoder Networks

Attention Weights

Conditional
Input Computation

LSTM Decoder

rv

- 1=]

v
the cat fell



Convolutional Seq2Seq - Ty s <
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Convolutions
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Convolutional Seq2Seq

la maison de Léa <end>



Convolutional Seq2Seq

la maison de Léa <end>
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Convolutional Seq2Seq
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Convolutional Seq2Seq
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Convolutional Seq2Seq

la maison de Léa <end>

Attention
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Convolutional Seq2Seq

la maison de Léa <end>

|
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Convolutional Seq2Seq

la maison de Léa <end>

Attention

Decoder

<start> Lea s house <end>



Lightweight and Dynamic Convolutions

k
DepthwiseConv(X, W, i,¢) = » W - X i e 0
j=1

LightConv(X, Wiy ., 4, ¢) = DepthwiseConv (X, softmax(Wpesq ), %, ¢)

DynamicConv (X, i, ¢) = LightConv(X, f(X;)n,,1,c¢)

we model f with a simple linear module with learned weights W< € RHE*kxd je  f(X;) =
d
Ec:l ngj,cXirC'



Lightweight and Dynamic Convolutions

GLU
A

( Linear ) (  Linear )
input input

(b) Lightweight convolution (c) Dynamic convolution



Lightweight and Dynamic Convolutions

Model Param (En-De) WMT En-De WMT En-Fr
Gehring et al. (2017) 216M 25.2 40.5
Vaswani et al. (2017) 213M 28.4 41.0
Ahmed et al. (2017) 213M 28.9 41.4
Chen et al. (2018) 379M 28.5 41.0
Shaw et al. (2018) - 29.2 41.5
Ott et al. (2018) 210M 29.3 43.2
LightConv 202M 28.9 43.1
DynamicConv 213M 29.7 43.2

Table 1: Machine translation accuracy in terms of BLEU for WMT En-De and WMT En-Fr on
newstest2014.

Model Param (Zh-En) IWSLT WMT Zh-En
Deng et al. (2018) - 33.1 -
Hassan et al. (2018) - - 24.2
Self-attention baseline 292M 34.4 23.8
LightConv 285M 34.8 24.3
DynamicConv 296M 35.2 24.4

Table 2: Machine translation accuracy in terms of BLEU on IWSLT and WMT Zh-En.



Thank you for your attention!

Valentin Malykh

https://val.maly.hk

ITMO University, 29.05.2019
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