
ITMO University, 29.05.2019

Valentin Malykh

Convolutional Neural Networks (for NLP)

Few word about me

• I am an Applied Research scientist at VK.com

• Part-time Research Scientist at iPavlov

• Worked at Yandex

• Graduated from Moscow Institute of Physics and Technology

• Recently defended a PhD thesis
 “Noise Robustness in Various NLP Tasks”

Overview of today

• From RNNs to CNNs

• CNN Variant 1: Simple single layer

• Application: Sentence classification

• More details and tricks

• Evaluation

• Comparison between sentence models

• CNN Variant 2: Complex multi layer

FromRNNs to CNNs

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

FromRNNs to CNNs

• Recursive neural nets
require a parser to get
tree structure

• Recurrent neural nets
cannot capture phrases
without prefix context
And often capture too much
of last words in final vector

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

FromRNNs to CNNs

• RNN: Getcompositional vectorsfor grammatical phrases only

• CNN: What if we compute vectors for every possible phrase?

• Example: “the country of my birth” computes vectorsfor:

• the country, country of, of my, my birth, the country of,
Country of my, of my birth, the country of my, country of my
birth

• Regardless of whether it is grammatical

• Wouldn’t need parser

• Not very linguistically or cognitively plausible

What is convolution anyway?

• 1d discrete convolution generally:

• Convolution is great to extract features from images

• 2d example

• Yellow shows filter weights

• Green shows input

From RNNs to CNNs

• First layer: compute all bigram vectors

• Same computation as in RNN but for every pair

• This can be interpreted as a convolution over the word vectors

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

FromRNNs to CNNs

• Now multiple options to compute higher layers.

• First option (simpleto understand but not necessarilybest)

• Just repeat with different weights:

the country ofmy birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

2
3.5

4
5.5

1
3.5

FromRNNs to CNNs

• First option (simple to understand but not necessarily best)

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

2
3.5

4
5.5

1
3.5

2
3.5

4
5.5

FromRNNs to CNNs

• First option (simple to understand but not necessarily best)

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

2
3.5

4
5.5

1
3.5

2
3.5

4
5.5

3
3.5

Multi-channel idea

• Initialize with pre-trained word vectors (e.g. word2vec)

• Start with two copies

• Backprop into only one set, keep other “static”

• Both channels are added to c before max-pooling

5/12/16Richard Socher

Figure from Kim (2014)

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

n words (possibly zero padded) and each word vector has k
dimensions

Tricks to make it work better: Dropout

• Idea: randomly mask/dropout/set to 0 some of the feature
weights z

• Create masking vector r of Bernoulli random variables with
probabilityp (a hyperparameter) of being 1

• Delete features during training:

• Reasoning:Prevents co-adaptation (overfitting to seeing specific
featureconstellations)

Tricks to make it work better: Dropout

• At training time, gradients are backpropagated only through
those elements of z vector for which r is 1

• At test time, there is no dropout, so feature vectors z are larger.

• Hence, we scale final vector by Bernoulli probability p

• Kim (2014)reports 2– 4% improved accuracy and ability to use
very large networks without overfitting

Another regularization trick

• Somewhat less common

• Constrain l 2 norms of weight vectors of each class (row in
softmax weight W (S)) to fixed number s (also a hyper-parameter)

• If , then rescale it so that:

5/12/16Richard Socher

All hyperparameters in Kim (2014)

• Find hyperparameters based on dev set

• Nonlinearity: ReLU

• Window filter sizes h = 3,4,5

• Each filter size has100 featuremaps

• Dropout p = 0.5

• L2 constraint s for rows of softmax s = 3

• Mini batch size for SGD training: 50

• Word vectors: pre-trained with word2vec, k = 300

• During training, keep checking performance on dev set and pick
highestaccuracy weights for final evaluation

Experiments

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Kalchbrenner et al., 2014) 48.5 86.8 93.0
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CCAE (Hermann and Blunsom, 2013) 77.8 87.2
Sent-Parser (Dong et al., 2014) 79.5 86.3
NBSVM (Wang and Manning, 2012) 79.4 93.2 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 93.6 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 93.4 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 93.6 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 81.4 86.1
CRF-PR (Yang and Cardie, 2014) 82.7
SVMS (Silva et al., 2011) 95.0

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from

Problem with comparison?

• Dropout gives 2 – 4% accuracy improvement

• Severalbaselines didn’t use dropout

• Still remarkable results and simple architecture!

• Difference to window and RNN architectures we described in
previous lectures: pooling, many filters and dropout

• Ideas canbe used in RNN s too

• Tree-LSTMs obtain better performance on sentence datasets

• Fixed tree RNNs explored in computer vision:
Socher et al (2012):“Convolutional-Recursive Deep Learning for
3D Object Classification”

5/12/16Richard SocherLecture 1, Slide 26

Relationship between RNNs and CNNs

• CNN RNN

Relationship between RNNs and CNNs

• CNN RNN

5/12/16Richard Socher

Relationship between RNNs and CNNs

• CNN RNN

• Stride size flexible in CNNs, RNNs “weighted average pool”

• Tying (sharing) weights of filters inside vs across different layers

• CNN: multiple filters, additional layer type: max-pooling

• Balanced input independent structure vs input specific tree

Model comparison

• Bag of Vectors: Surprisingly good baseline for simple
classification problems. Especially if followed by a few layers!

• Window Model: Good for single word classification for
problems that do not need wide context

• CNNs: good for classification, unclear how to incorporate phrase
level annotation (can only take a single label),need zero
padding for shorter phrases, hard to interpret, easy to
parallelize on GPUs

Model comparison

• Recursive Neural Networks: most linguistically plausible,
interpretable, provide most important phrases (for
visualization), need parse trees

• Recurrent Neural Networks: Most cognitively plausible (reading
from left to right), not usually the highestclassification
performance but lots of improvements right now with gates
(GRUs, LSTMs, etc).

• Best but also most complex models: Hierarchical recurrent
neural networks with attention mechanisms and additional
memory

Gated Convolutions

Gated Linear Unit:

Gated Convolutions

CNN application: Translation

• One of the first successfulneural
machine translation efforts

• Uses CNN for encoding and
RNN for decoding

• Kalchbrenner and Blunsom (2013)
“Recurrent Continuous Translation Models”

P(f | e)

e

e

S

csm

Convolutional Encoder

Convolutional Seq2Seq

Convolutional Seq2Seq

Convolutional Seq2Seq

Convolutional Seq2Seq

Convolutional Seq2Seq

Convolutional Seq2Seq

Convolutional Seq2Seq

Convolutional Seq2Seq

Lightweight and Dynamic Convolutions

Lightweight and Dynamic Convolutions

Lightweight and Dynamic Convolutions

ITMO University, 29.05.2019

Valentin Malykh

https://val.maly.hk

 Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

