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Few word about me

• I am an Applied Research scientist at VK.com

• Part-time Research Scientist at iPavlov

• Worked at Yandex

• Graduated from Moscow Institute of Physics and Technology

• Recently defended a PhD thesis 
                          “Noise Robustness in Various NLP Tasks”



Overview of today

• From RNNs to CNNs

• CNN Variant 1: Simple single layer

• Application: Sentence classification

• More details and tricks

• Evaluation

• Comparison between sentence models

• CNN Variant 2: Complex multi layer



FromRNNs to CNNs
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FromRNNs to CNNs

• Recursive neural nets
require a parser to get
tree structure

• Recurrent neural nets
cannot capture phrases
without prefix context
And often capture too much
of last words in final vector
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FromRNNs to CNNs

• RNN: Getcompositional vectorsfor grammatical phrases only

• CNN: What if we compute vectors for every possible phrase?

• Example: “the country of my birth” computes vectorsfor:

• the country, country of, of my, my birth, the country of,
Country of my, of my birth, the country of my, country of my
birth

• Regardless of whether it is grammatical

• Wouldn’t need parser

• Not very linguistically or cognitively plausible



What is convolution anyway?

• 1d discrete convolution generally:

• Convolution is great to extract features from images

• 2d example

• Yellow shows filter weights

• Green shows input



From RNNs to CNNs

• First layer: compute all bigram vectors

• Same computation as in RNN but for every pair

• This can be interpreted as a convolution over the word vectors
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FromRNNs to CNNs

• Now multiple options to compute higher layers.

• First option (simpleto understand but not necessarilybest)

• Just repeat with different weights:
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FromRNNs to CNNs

• First option (simple to understand but not necessarily best)
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FromRNNs to CNNs

• First option (simple to understand but not necessarily best)
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Multi-channel idea

• Initialize with pre-trained word vectors (e.g. word2vec)

• Start with two copies

• Backprop into only one set,  keep other “static”

• Both channels are added to c before max-pooling
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Figure from Kim (2014)

wait 
for 
the 

video 
and 
do 
n't 

rent 
it 

n x k representation of 
sentence with static and 

non-static channels 

Convolutional layer with 
multiple filter widths and 

feature maps 

Max-over-time 
pooling 

Fully connected layer 
with dropout and  
softmax output 

Figure 1: Model architecture with two channels for an example sentence.

n words (possibly zero padded) and each word vector has k 
dimensions 



Tricks to make it work better: Dropout

• Idea: randomly mask/dropout/set to 0 some of the feature
weights z

• Create masking vector r of Bernoulli random variables with
probabilityp (a hyperparameter) of being 1

• Delete features during training:

• Reasoning:Prevents co-adaptation (overfitting to seeing specific
featureconstellations)



Tricks to make it work better: Dropout

• At training time, gradients are backpropagated only through
those elements of z vector for which r is 1

• At test time, there is no dropout, so feature vectors z are larger.

• Hence, we scale final vector by Bernoulli probability p

• Kim (2014)reports    2– 4% improved accuracy    and ability to use
very large networks without overfitting



Another regularization trick

• Somewhat  less common

• Constrain l 2  norms of weight vectors of each class (row in
softmax weight W (S)) to fixed number s (also a hyper-parameter)

• If , then rescale it so that:
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All hyperparameters in Kim (2014)

• Find hyperparameters based on dev set

• Nonlinearity: ReLU

• Window filter sizes h = 3,4,5

• Each filter size has100 featuremaps

• Dropout p = 0.5

• L2 constraint s for rows of softmax s = 3

• Mini batch size for SGD training: 50

• Word vectors: pre-trained with word2vec, k = 300

• During training, keep checking performance on dev set and pick
highestaccuracy weights for final evaluation



Experiments

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Kalchbrenner et al., 2014) 48.5 86.8 93.0
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CCAE (Hermann and Blunsom, 2013) 77.8 87.2
Sent-Parser (Dong et al., 2014) 79.5 86.3
NBSVM (Wang and Manning, 2012) 79.4 93.2 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 93.6 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 93.4 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 93.6 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 81.4 86.1
CRF-PR (Yang and Cardie, 2014) 82.7
SVMS (Silva et al., 2011) 95.0

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from



Problem with comparison?

• Dropout gives 2 – 4% accuracy improvement

• Severalbaselines didn’t use dropout

• Still remarkable results and simple architecture!

• Difference to window and RNN architectures we described in
previous lectures: pooling, many filters and dropout

• Ideas canbe used in RNN s too

• Tree-LSTMs obtain better performance on sentence datasets



• Fixed tree RNNs explored in computer vision:
Socher et al (2012):“Convolutional-Recursive Deep Learning for
3D Object Classification”
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Relationship between RNNs and CNNs

• CNN RNN



Relationship between RNNs and CNNs

• CNN RNN
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Relationship between RNNs and CNNs

• CNN RNN

• Stride size flexible in CNNs, RNNs “weighted average pool”

• Tying (sharing) weights of filters inside vs across different layers

• CNN: multiple filters, additional layer type: max-pooling

• Balanced input independent structure vs input specific tree





Model comparison

• Bag of Vectors: Surprisingly good baseline for simple
classification problems. Especially if followed by a few layers!

• Window Model: Good for single word classification for
problems that do not need wide context

• CNNs: good for classification, unclear how to incorporate phrase
level annotation  (can only take a single label),need zero
padding for shorter phrases, hard to interpret, easy to
parallelize on GPUs



Model comparison

• Recursive Neural Networks: most linguistically plausible,
interpretable, provide most important phrases (for
visualization), need parse trees

• Recurrent Neural Networks: Most cognitively plausible (reading
from left to right), not usually the highestclassification
performance but lots of improvements right now with gates
(GRUs, LSTMs, etc).

• Best but also most complex models: Hierarchical recurrent
neural networks with attention mechanisms and additional
memory









Gated Convolutions

Gated Linear Unit:



Gated Convolutions



CNN application: Translation

• One of the first successfulneural
machine translation efforts

• Uses CNN for encoding and
RNN for decoding

• Kalchbrenner and Blunsom (2013)
“Recurrent Continuous Translation Models”
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Convolutional Encoder



Convolutional Seq2Seq



Convolutional Seq2Seq



Convolutional Seq2Seq



Convolutional Seq2Seq



Convolutional Seq2Seq



Convolutional Seq2Seq



Convolutional Seq2Seq



Convolutional Seq2Seq



Lightweight and Dynamic Convolutions



Lightweight and Dynamic Convolutions



Lightweight and Dynamic Convolutions
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           Thank you for your attention!
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