Attention

Valentin Malykh

ITMO University, 05.06.2019

Overview

- ELMo
- Seq2Seq in details
- Attention in applications

Deep contextualized word representations

Deep contextualized word representations

Deep contextualized word representations: Loss and Results

$$ELMo_k^{task} = \gamma_k \cdot (s_0^{task} \cdot x_k + s_1^{task} \cdot h_{1,k} + s_2^{task} \cdot h_{2,k})$$

Task	Previous SOTA	ELMo Results
SQuAD (question/answering)	84.4	85.8
SNLI (textual entailment)	88.6	88.7
Semantic Role Labelling	81.7	84.6
Coref Resolution	67.2	70.4
NER	91.93	92.22
SST-5 (sentiment analysis)	53.7	54.7

Sequence-to-sequence: the bottleneck problem

Encoding of the source

sentence.

Neural Machine Translation (NMT)

The sequence-to-sequence model

Attention

- Attention provides a solution to the bottleneck problem.
- <u>Core idea</u>: on each step of the decoder, *focus on a particular part* of the source sequence

 First we will show via diagram (no equations), then we will show with equations

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.

2/20/18

2/20/18

Basic Attention equations

- We have encoder hidden state $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores $e^t = [s_t^T h_1, \dots, s_t^T h_N] \in \mathbb{R}^N$ for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution $lpha^t = ext{softmax}(m{e}^t) \in \mathbb{R}^N$

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use it to take a weighted sum of the encoder hidden states to get the atention output

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output state $s_t \in \mathbb{R}^h$ and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Recap: Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

Attention is a general Deep Learning technique

- <u>Last time</u>: We saw that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: Today we'll see attention is applied to many architectures (not just seq2seq) and many tasks (not just MT)
- More general definition of attention:
 - Given a set of vector values, and a vector query, <u>attention</u> is a technique to compute a weighted sum of the values, dependenton the query.
- We sometimes say that the query attends to the values.
- For example, in the seq2seq + attention model, each decoder hidden state attends to the encoder hidden states.

Attention is a general DeepLearning technique

More general definition of attention:

Given a set of vector values, and a vector query, attention is a

technique to compute a weighted sum of the values, dependent on the query.

• Intuition:

- The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

There are several attention variants

• We have some values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a query $s \in \mathbb{R}^{d_2}$

 $a \in \mathbb{R}^{d_1}$ (sometimes called the context vector) from the attention scores $e \in \mathbb{R}^N$ (or attention logits) like so:

$$lpha = ext{softmax}(oldsymbol{e}) \in \mathbb{R}^N$$
 (take softmax) $oldsymbol{a} = \sum_{i=1}^N lpha_i oldsymbol{h}_i \in \mathbb{R}^{d_1}$ (take weighted sum)

• However, there are several ways you can compute $e \in \mathbb{R}^N$

Attention variants

There are several ways you can compute $e \in \mathbb{R}^N$ and $s \in \mathbb{R}^{d_2}$

- <u>Basic</u> dot-product attenti $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{h}_i \in \mathbb{R}$
 - Note: this assum $d_1 = d_2$
 - This is the version we saw earlier
- <u>Multiplicative</u> attention $e_i = s^T W h_i \in \mathbb{R}$
 - Where $\boldsymbol{W} \in \mathbb{R}^{d_2 \times d_1}$
- Additive attention: $\boldsymbol{e}_i = \boldsymbol{v}^T \tanh(\boldsymbol{W}_1 \boldsymbol{h}_i + \boldsymbol{W}_2 \boldsymbol{s}) \in \mathbb{R}$
 - Where $W_1 \in \mathbb{R}^{d_3 \times d_1}, W_2 \in \mathbb{R}^{d_3 \times d_2}$ $v \in \mathbb{R}^{d_3}$ is a weight vector

More information: http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

Attention application: Pointing to words for language modeling

• Idea: Mixture Model of softmax and pointers:

 $p(\text{Yellen}) = g p_{\text{vocab}}(\text{Yellen}) + (1 \quad g) p_{\text{ptr}}(\text{Yellen})$

 PointerSentinel Mixture Models by Stephen Merity, Caiming Xiong, James Bradbury, Richard Socher

Pointer-Sentinel Pointer Sentine Mixture Models

$$egin{aligned} p(y_i|x_i) &= g \; p_{ ext{vocab}}(y_i|x_i) + (1-g) \; p_{ ext{ptr}}(y_i|x_i) \ &z_i &= q^T h_i, \qquad p_{ ext{ptr}}(w) = \sum_{i \in I(w,x)} a_i, \ &a &= ext{softmax}(z), \end{aligned}$$

1

Pointer Sentinel for Language Modeling Pointer Sentinel Mixture Models

Model	Parameters	Validation	Test
Mikolov & Zweig (2012) - KN-5	$2M^{\ddagger}$		141.2
Mikolov & Zweig (2012) - KN5 + cache	$2M^{\ddagger}$		125.7
Mikolov & Zweig (2012) - RNN	$6M^{\ddagger}$		124.7
Mikolov & Zweig (2012) - RNN-LDA	$7M^{\ddagger}$		113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]		92.0
Pascanu et al. (2013a) - Deep RNN	6M		107.5
Cheng et al. (2014) - Sum-Prod Net	$5M^{\ddagger}$		100.0
Zaremba et al. (2014) - LSTM (medium)	20M	86.2	82.7
Zaremba et al. (2014) - LSTM (large)	66M	82.2	78.4
Gal (2015) - Variational LSTM (medium, untied)	20M	81.9 ± 0.2	79.7 ± 0.1
Gal (2015) - Variational LSTM (medium, untied, MC)	20M		78.6 ± 0.1
Gal (2015) - Variational LSTM (large, untied)	66M	77.9 ± 0.3	75.2 ± 0.2
Gal (2015) - Variational LSTM (large, untied, MC)	66M		73.4 ± 0.0
Kim et al. (2016) - CharCNN	19M		78.9
Zilly et al. (2016) - Variational RHN	32M	72.8	71.3
Zoneout + Variational LSTM (medium)	20M	84.4	80.6
Pointer Sentinel-LSTM (medium)	21M	72.4	70.9

Attention application: Intra-Decoder attention forSummarization

• Longer document summarization. Example:

Tony	Blair	has	said	he	does	not	want	to	retire	until	he	is	91	– as	he	unveile	ed	pl
around	the	world.	The	defiant	: 61-yea	r-old	former	Prime	Ministe	er	said	he	had	'decade	es'	still	in	hi
he	ever	steppe	d	down	from	his	multitu	ıde	of	global	roles.	He	told	Newsw	veek	magaz	ine	th
govern	ment	to	go	round	the	world	to	advise	preside	ents	and	prime	ministe	ers	on	how	to	ru
Newsw	reek	Mr Blai	r	said	he	did	not	want	to	retire	until	he	was	91	years	old	Mr Bla	ir
govern	ment	to	advise	preside	ents	and	prime	ministe	ers	on	how	to	run	their	countr	ies	Mr Bla	ir
preside	ent	Bill	Clinton	when	he	took	office	in	1997.	And	he	said	he	wanted	l to	build	up	hi
are	'capab	le	of	changi	ng	global	policy'.	Last	night,	Tory	MPs	expres	sed	horror	at	the	prospe	:ct
30	years.	Andrev	vBridger	n said:	'We	all	know	weak	Ed	Milibar	nd's	called	on	Tony	to	give	his	fla
clearly	gone	to	his	head.'	()													

• Summary:

The former Prime Minister claimed he has 'decades' of work left in him. Joked he would 'turn to drink' if he ever stepped down from global roles. Wants to recruit former government heads to advise current leaders. He was 'mentored' by US president Bill Clinton when he started in 1997.

Attention application: Intra-Decoder attention forSummarization

- Based on paper:
- Romain Paulus, Caiming Xiong, and Richard Socher. 2017.
 <u>A Deep Reinforced Model for Abstractive Summarization</u>
- But similar ideas appear elsewhere also
- Two necessary, new ingredients
 - Attention during generation
 - Reinforcement learning
 - Not in this lecture

Attention application: Similar Seq2Seq Idea as in Translation

 Problems: For longer outputs (MT was just single sentences), the decoder starts to repeat itself

More advanced attention

- 1. More advanced encoder attention
- 2. Self-attention (= intra-decoder attention)

Encoder

Decoder

1. Details of this attention mechanism

• More advanced similarity function than simple inner product:

$$e_{ti} = f(h_t^d, h_i^e)$$
$$f(h_t^d, h_i^e) = h_t^d{}^T W_{\text{attn}}^e h_i^e$$

• Temporal attention function, penalizing input tokens that have obtained high attention scores in past decoding steps:

$$e'_{ti} = \begin{cases} exp(e_{ti}) & \text{if } t = 1\\ \frac{exp(e_{ti})}{\sum_{j=1}^{t-1} \exp(e_{ji})} & \text{otherwise} \end{cases}$$

Improves coverage and prevent repeated attention to same
 inputs

1. Details of this attention mechanism

Combine softmax'ed weighted hidden states from encoder:

Remember softmax-normalized encoder for later!

2. Self-attention ondecoder

- <u>Self-attention:</u> A general idea used inmany RNN models (e.g. Language Models). The hidden states "attend to themselves", i.e. each hidden state attends to the previous hidden states of the same RNN.
- On step t, attends to previous **decoder** hidden states

$$e^d_{tt'} = h^{d^T}_t W^d_{\text{attn}} h^d_{t'}$$

• Apply softmax to get attention distribution over previous hidden states $e_{tt'}^d = h_t^{d^T} W_{attn}^d h_{t'}^d$ for t' = 1,...,t-1:

$$\alpha_{tt'}^d = \frac{exp(e_{tt'}^d)}{\sum_{j=1}^{t-1} exp(e_{tj}^d)}$$

• Compute decoder attention output: $c_t^d = \sum_{j=1}^{t-1} lpha_{tj}^d h_j^d$

2. Combine softmax and pointers using both attention computations

Compute probability of copying/pointing to word from input:

$$p(u_t = 1) = \sigma(W_u[h_t^d || c_t^e || c_t^d] + b_u)$$

- If not copying/pointing, use standard softmax: $p(y_t|u_t = 0) = \operatorname{softmax}(W_{\operatorname{out}}[h_t^d \| c_t^e \| c_t^d] + b_{\operatorname{out}})$
- If pointing, use encoder attention weights (from 2 slides ago) $p(y_t=x_i|u_t=1)=lpha_{ti}^e$
- Combine everything:

$$p(y_t) = p(u_t = 1)p(y_t|u_t = 1) + p(u_t = 0)p(y_t|u_t = 0)$$

Summarization Results

cia documents reveal iot-specific televisions can be used to secretly record conversations . cybercriminals who initiated the attack managed to commandeer a large number of internet-connected devices in current use .

cia documents revealed that microwave ovens can spy on you - maybe if you personally don't suffer the consequences of the sub-par security of the iot .

Internet of Things (IoT) security breaches have been dominating the headlines lately. WikiLeaks's trove of CIA documents revealed that internet-connected televisions can be used to secretly record conversations. Trump's advisor Kellyanne Conway believes that microwave ovens can spy on you - maybe she was referring to microwave cameras which indeed can be used for surveillance. And don't delude yourself that you are immune to IoT attacks, with 96 % of security professionals responding to a new survey expecting an increase in IoT breaches this year. Even if you personally don't suffer the consequences of the sub-par security of the IoT, your connected gadgets may well be unwittingly cooperating with criminals. Last October, Internet service provider Dyn came under an attack that disrupted access to popular websites. The cybercriminals who initiated the attack managed to commandeer a large number of internet-connected devices (mostly DVRs and cameras) to serve as their helpers. As a result, cybersecurity expert Bruce Schneier has called for government regulation of the IoT, concluding that both IoT manufacturers and their customers don't care about the security of the 8.4 billion internet-connected devices in current use. Whether because of government regulation or good old-fashioned self-interest, we can expect increased investment in IoT security technologies . In its recently-released TechRadar report for security and risk professionals, Forrester Research discusses the outlook for the 13 most relevant and important IoT security : IoT network security : Protecting and securing the network connecting IoT devices to back-end systems on the internet . IoT network security is a bit more challenging than traditional network security because there is a wider range of communication protocols , standards , and device capabilities , all of which pose significant issues and increased complexity . Key capabilities include traditional endpoint security features such as antivirus and antimalware as well as other features su

Summarization Results

The bottleneck is no longer access to information; now it's our ability to keep up. Al can be trained on a variety of different types of texts and summary lengths. A model that can generate long, coherent, and meaningful summaries remains an open research problem.

The last few decades have witnessed a fundamental change in the challenge of taking in new information. The bottleneck is no longer access to information; now it's our ability to keep up. We all have to read more and more to keep up-to-date with our jobs, the news, and social media. We've looked at how AI can improve people's work by helping with this information deluge and one potential answer is to have algorithms automatically summarize longer texts. Training a model that can generate long, coherent, and meaningful summaries remains an open research problem. In fact, generating any kind of longer text is hard for even the most advanced deep learning algorithms. In order to make summarization successful, we introduce two separate improvements: a more contextual word generation model and a new way of training summarization models via reinforcement learning (RL). The combination of the two training methods enables the system to create relevant and highly readable multi-sentence summaries of long text, such as news articles, significantly improving on previous results. Our algorithm can be trained on a variety of different types of texts and summary lengths. In this blog post, we present the main contributions of our model and an overview of the natural language challenges specific to text summarization.

Similar ideas explored simultaneously by Abi et al.

• Get To The Point: Summarization with Pointer-Generator Networks, Abigail See, Peter J. Liu, Christopher Manning, 2017

Blog post: http://www.abigailsee.com/2017/04/16/taming-rnns-for-better-summarization.html

Using attention for coverage

Caption generation

68

How to not miss an important image patch?

Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML'15

Sequence-to-sequence: the bottleneck problem

Encoding of the source sentence.

Problems with RNNs = Motivation forTransformers

• Sequential computation prevents parallelization

- Despite GRUs and LSTMs, RNNs still need attention mechanism to deal with long range dependencies – path length for codependent computation between states grows with sequence
- But if attention gives us access to any state... maybe we don't need the RNN?

Transformer Overview

- Sequence-to-sequence
- Encoder-Decoder
- Task: machine translation with parallel corpus
- Predict each translated word
- Final cost/error function is standard cross-entropy error
 on top of a softmax classifier

This and related figures frompaper: https://arxiv.org/pdf/1706.03762.pdf

Transformer Paper

- Attention Is All You Need [2017]
- by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, LukaszKaiser, Illia Polosukhin
- Equal contribution. Listing order is random. Jakob proposed replacing RI attention and started the effort to evaluate this idea.Ashish, with Illia, designed implemented the first Transformer models and has been crucially involved in aspect of this work. Noam proposed scaled dot-product attention, m attention and the parameter-free position representation and became the ot person involved in nearly every detail. Niki designed, implemented, tuned evaluated countless model variants in our original codebase and tensor2tens also experimented with novel model variants, was responsible for our initial codebase, and efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively action our research.

Transformer Basics

• Let's define the basic building blocks of transformer networks first: new attention layers!

Dot-Product Attention (Extending our previous def

- Inputs: a query q and a set of key-value (k-v) pairs to an output
- Query, keys, values, and output are all vectors
- Output is weighted sum of values, where
- Weight of each value is computed by an inner product of query and corresponding key
- Queries and keys have same dimensionality d

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

Dot-Product Attention – Matrix notation

• When we have multiple queries q, we stack them in a matrix Q:

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

• Becomes: $A(Q, K, V) = softmax(QK^T)V$

$$\begin{bmatrix} |Q| & x_k \end{bmatrix} d_k x \quad |K| \begin{bmatrix} d & x_v \end{bmatrix} \quad \begin{bmatrix} |K| & x & d \\ x_v \end{bmatrix} = \begin{bmatrix} |Q| & x_v & d \\ x_v & d \end{bmatrix}$$

Scaled Dot-Product Attention

- Problem: As d gets large, the variance of qTk in creases values inside the softmax get large the softmax gets very peaked--> hence its gradient gets smaller.
- Solution: Scale by length of query/key vectors:

$$A(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{d_k}}\right) V$$

Self-attention and Multi-head attention

- The input word vectors could be the queries, keys and values
- In other words: the word vectors themselves select each other
- Word vector stack = Q = K = V
- Problem: Only one way for words to interact with one-another
- Solution: Multi-head attention
- First map Q, K, V into h many dimensional spaces via W matrices
- Then apply attention, then concaten. Outputs and pipe through linear layer

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

Complete transformer block

- Each block has two "sublayers"
- **1.** Multihead attention
- 2. 2 layer feed-forward Nnet (with relu)

Each of these two steps also has: Encoding Residual (short-circuit) connection and LayerNorm: LayerNorm(x + Sublayer(x))

Layernorm changes input to have mean 0 and variance 1, per layer and per training point (and adds two more parameters)

$$\mu^l = rac{1}{H}\sum_{i=1}^H a_i^l \qquad \sigma^l = \sqrt{rac{1}{H}\sum_{i=1}^H \left(a_i^l - \mu^l
ight)^2} \qquad \qquad h_i = f(rac{g_i}{\sigma_i}\left(a_i - \mu_i
ight) + b_i)$$

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf

Encoder Input

Actual word representations are byte-pair encodings

 Also added is a positional encoding so same words at different locations have different overall representations:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Complete Encoder

- For encoder, at each block, we use the same Q, K and V from the previous layer
- Blocks are repeated 6 times

Attention visualization in layer 5

• Words start to payattention to other words in sensible ways

Attention visualization: Implicit anaphora resolution

In 5th Layer. Isolated attentions from just the word 'its' for attention heads 5 and 6. Note that the attentions are very sharp for this word.

Transformer Decoder

- 2 sublayer changes in decoder
- Masked decoder self-attention on previously generated outputs:

 Encoder-Decoder Attention, where queries come from previous decoder layer and keys and values come from output of encoder

Tips and tricks of the Transformer

Details in paper and later lectures:

- Byte-pair encodings
- Checkpoint averaging
- ADAM optimizer with learning rate changes
- Dropout during training at every layer justbefore adding residual
- Label smoothing
- Auto-regressive decoding with beam search and length penalties
- Overall, they are hard to optimize and unlike LSTMs don't usually work out of the box and don't play well yet with other building blocks on tasks.

Experimental Results for MT

_				-		
Madal	BL	EU	Training Co	Training Cost (FLOPs)		
WIOUEI	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$		
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$			
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}		

Experimental Results for Parsing

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

From ELMo to BERT

BERT Internals

BERT Training

Input: The man went to the [MASK]₁ . He bought a [MASK]₂ of milk .
Labels: [MASK]₁ = store; [MASK]₂ = gallon

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

Thank you for your attention!

Valentin Malykh

https://val.maly.hk

ITMO University, 05.06.2019