arXiv.org > cs > arXiv:1901.07829

Computer Science > Computation and Language

AspeRa: Aspect-based Rating Prediction Model

Sergey I. Nikolenko, Elena Tutubalina, Valentin Malykh, Ilya Shenbin, Anton Alekseev (our paper accepted to Colorne Colorne)

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

NLP seminar @ NRU ITMO, St Petersburg Feb 16, 2019

(a total of 33 slides)

Who are we?

Joint Samsung-PDMI AI Center (Artificial Intelligence Laboratory, Steklov Mathematical Institute St Petersburg)

A distributed team of researchers working on a pool of different tasks requiring the usage of neural methods

for questions regarding possible collaboration please contact Sergey snikolenko@gmail.com

Plan

- 1. Recommender systems
- 2. Aspects extraction
- 3. Aspect-based recommendations: AspeRa
- 4. Discussion and future work directions

Recommender systems: task

(may I please skip the explanation what recommender systems are for?)

Goal: based on users' feedback (of any kind!) on items, suggesting users new items

Usually are roughly divided into

- **content-based** ones (determining what kind of content the user likes)
- those utilizing collaborative filtering (predicting preferences based on similarity to other users)

Recommender systems: task

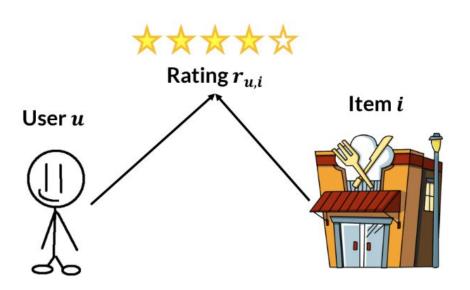
Explicit feedback matrix of ratings

 $R_{NxM} = \{ r_{u,i} \text{ in } 0..5 \}$

value 1..5 if the user **u** has interacted with the item **i**

0 -- if one has't

Task: predict new items the user Is supposed to rate higher



Recommender systems: traditional CF approach

Methods that are well-known and widely used in industry

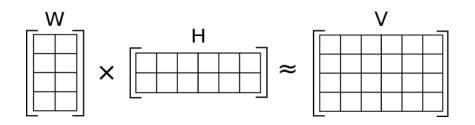
NMF

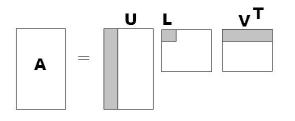
nonnegative matrix factorization

SVD

singular value decomposition

...And all other kinds and shapes of matrix approximation ways





Text-aware recommender systems: why?

...more useful data.

A common situation: users are asked to write reviews as their response becomes more trustworthy and informative for other users

User-item interaction becomes:

(u, i, r_{u,i}, d_{u,i}) Rating Review *****

🔀 🔛 🔛 🔛 1/29/2019

My party had a 7:30 reservation. We were seated right away but the wait time for orders was ABYSMAL! When my party ordered waters for drinks the waiter rolled his eyes. Two out of 6 orders were wrong. We were waiting more than preferred, for food. We had to ask what time our order would be out. Not much diversity, we were a mostly Hispanic party...

Read more

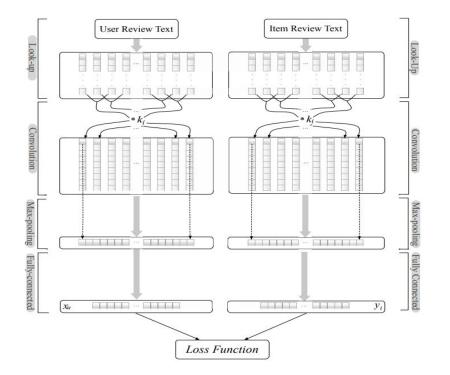
I do like Russian Samovar. I often stay in Novotel next door when on business in NYC, so I start getting into the habit of stopping by Russian samovar for a drink and something to eat at the bar. Well, I am Russian speaking, and from that region, and know everything about the food they serve. Beef Stroganoff are guite good there, and so are...

Read more

Going to Cher show with the wife. The Sanovar is across the street from the show and was awesome. The Vodka was cold and tasty. I had the Beef short ribs and my wife

Img src:: https://drive.google.com/file/d/1ILrOhHO8K9V-euVg0Ur2xtsKYhRPNyfb/view

Baseline example: DeepCoNN



Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users and items using reviews for recommendation. In WSDM. ACM, 425-434.

Concatenation of the word vectors for all the concatenated reviews

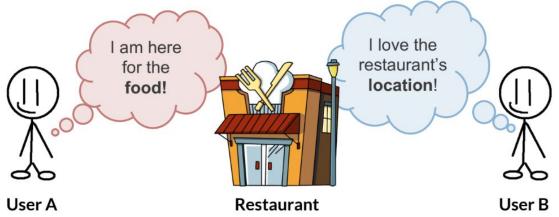
- written by the user in concern
- devoted to the item in concern

and a standard two-tower architecture

Aspect-based recommender systems

Users value **different features (aspects) in items**, and have different opinion each of aspects of one item, so taking this into account may

- improve predictions
- help analyze items' most/least valued features or users' preferences



Room for improvement

- text-based systems are limited in terms of interpretability of predictions
- aspect-based systems often rely on external aspects extraction instruments, which is the cause of the quality limits

Plan

- 1. Recommender systems
- 2. Aspects extraction
- 3. Aspect-based recommendations: AspeRa
- 4. Discussion and future work directions

Aspects Extraction

the goal = to extract **entity aspects on which opinions have been expressed**

In practice may be is **rule-based/supervised BUT**: suffers from domain adaptation

Hence, **unsupervised** approaches are to be worked on; usually -- all kinds and flavours of **LDA**, **BTM**, etc. **BUT**: reviews are short, 'extra efforts' on estimating the document distribution,

could try something else

#	sent.	sentiment words				
	neu	соус [sauce], салат [salad], кусочек [slice], сыр [cheese], тарелка [plate], овощ				
1		[vegetable], масло [oil], лук [onions], перец [pepper]				
	pos	приятный [pleasant], атмосфера [atmosphere], уютный [cozy], вечер				
		[evening], музыка [music], ужин [dinner], романтический [romantic]				
	neg	ресторан [restaurant], официант [waiter], внимание [attention], сервис [se				
		vice], обращать [to notice], обслуживать [to serve], уровень [level]				
	neu	столик [table], заказывать [to order], вечер [evening], стол [table], приходить				
2		[to come], место [place], заранее [in advance], встречать [to meet]				
	pos	место [place], хороший [good], вкус [taste], самый [most], приятный [pleas-				
		ant], вполне [quite], отличный [excellent], интересный [interesting]				
	neg	еда [food], вообще [in general], никакой [none], заказывать [to order],				
		оказываться [appear], вкус [taste], ужасный [awful], ничто [nothing]				
	neu	девушка [girl], спрашивать [to ask], вопрос [question], подходить [to come],				
3		официантка [waitress], официант [waiter], говорить [to speak]				
	pos	большой [big], место [place], выбор [choice], хороший [good], блюдо [dish],				
		цена [price], порция [portion], небольшой [small], плюс [plus]				
	neg	цена [price], обслуживание [service], качество [quality], уровень [level],				
		кухня [kitten], средний [average], ценник [price tag], высоко [high]				

An Unsupervised Neural Attention Model for Aspect Extraction

Ruidan He^{†‡}, Wee Sun Lee[†], Hwee Tou Ng[†], and Daniel Dahlmeier[‡]

ABAE, a simple yet effective neural method, works as an autoencoder:

- each word is assigned a word embedding (e.g. skip-grams)
- words in a sentence are summed weighted with attention (hopefully down-weighting the non-aspect words)
- 3. the resulting sentence embedding is transformed with **one FF layer**
- 4. ...and then that sentence embedding is recovered with aspects matrix T

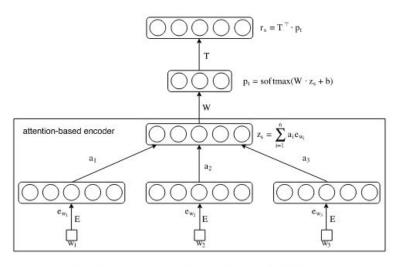
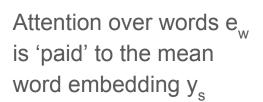


Figure 1: An example of the ABAE structure.

ACL 2017

An Unsupervised Neural Attention Model for Aspect Extraction Ruidan He^{†‡}, Wee Yan Dee[†], Hwee Tou Ng[†], and Daniel Dahlmeier[‡]



 $T_n T_n^{T}$ is forced to be **close to orthogonal** to penalize redundancy

Main recovery loss (max-margin)

$$a_i = \frac{\exp(d_i)}{\sum_{j=1}^n \exp(d_j)}$$
$$d_i = \mathbf{e}_{w_i}^\top \cdot \mathbf{M} \cdot \mathbf{y}_s$$
$$\mathbf{y}_s = \frac{1}{n} \sum_{i=1}^n \mathbf{e}_{w_i}$$

$$U(\boldsymbol{\theta}) = \|\mathbf{T}_n \cdot \mathbf{T}_n^\top - \mathbf{I}\|$$

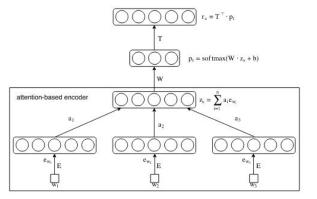
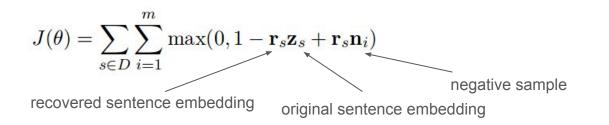


Figure 1: An example of the ABAE structure.



An Unsupervised Neural Attention Wodel for Aspect Extraction Ruidan He^{†‡}, Wee Sun Lee[†], Hwee Tou Ng[†], and Daniel Dahlmeier[‡]

Inferred Aspects	Representative Words	Gold Aspects	
Main Dishes	beef, duck, pork, mahi, filet, veal		
Dessert	gelato, banana, caramel, cheesecake, pudding, vanilla		
Drink	bottle, selection, cocktail, beverage, pinot, sangria	Food	
Ingredient	cucumber, scallion, smothered, stewed, chilli, cheddar		
General	cooking, homestyle, traditional, cuisine, authentic, freshness		
Physical Ambience	wall, lighting, ceiling, wood, lounge, floor	Ambience	
Adjectives	intimate, comfy, spacious, modern, relaxing, chic	Amolence	
Staff	waitstaff, server, staff, waitress, bartender, waiter	Staff	
Service	unprofessional, response, condescending, aggressive, behavior, rudeness	Stall	
Price	charge, paid, bill, reservation, came, dollar	Price	
Anecdotes	celebrate, anniversary, wife, fiance, recently, wedding	Anecdotes	
Location	park, street, village, avenue, manhattan, brooklyn		
General	excellent, great, enjoyed, best, wonderful, fantastic	Misc.	
Other	aged, reward, white, maison, mediocrity, principle		

An Unsupervised Neural Attention Model for Aspect Extraction

Ruidan He^{†‡}, Wee Sun Lee[†], Hwee Tou Ng[†], and Daniel Dahlmeier[‡]

On prediction stage,

- the aspects rates for the text are obtained as outputs of the FF layer with softmax
- the words describing aspects (please see the prev. slide) are obtained as nearest neighbours to aspects embeddings from the T matrix

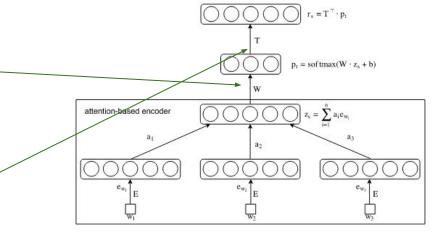


Figure 1: An example of the ABAE structure.

Discussion

Findings from experience:

- stopwords filtering is important
- custom word2vec vectors perform better in terms of interpretability
- couldn't make work on non-review data (larger texts where aspects may not be present, e.g. news, fashion reviews)
- good aspects matrix initialization is extremely important

5	wordprocessing blogging picasa blackboard sketchup youtubing ev
6	'kardon harman altec sound harmon lansing speaker treble audiopl
7	'price clearance officemax mart wal msrp bb reward tax financing'
8	'screen display tint uniform ppi saturated representation colorful viv
9	'lug dorm tote bike carrying travel motorcycle briefcase commuting
10	pant perpendicular bathroom thump nose upwards cringe blanket f
11	'circa xt spectre theasus sb fujitsu weighed hp pavillion thinnest'
12	'redundantly liveupdate inflate deference <unk> exasperated staun</unk>
13	'resists grippy faux rubberized rubbery machined velvet alloy foam
14	'headquarters phoned mailed dept authorization kentucky apologize

Plan

- 1. Recommender systems
- 2. Aspects extraction
- 3. Aspect-based recommendations: AspeRa
- 4. Discussion and future work directions

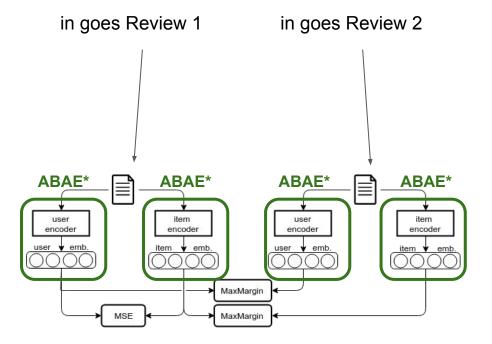
AspeRa: the idea

Two towers, each contains an ABAE-like encoder, which provides reconstruction "**user embeddings**" and "**item embeddings**"

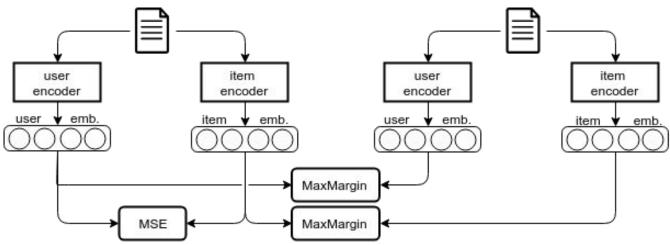
The intuition: there are some features (aspects) important in an item **for a user**, but the item also has **other features**.

The idea was to **separate** item-related and user-related information and to have the possibility to **analyze** users' preferences and items' features

Note: no explicit usage of user ID or item ID



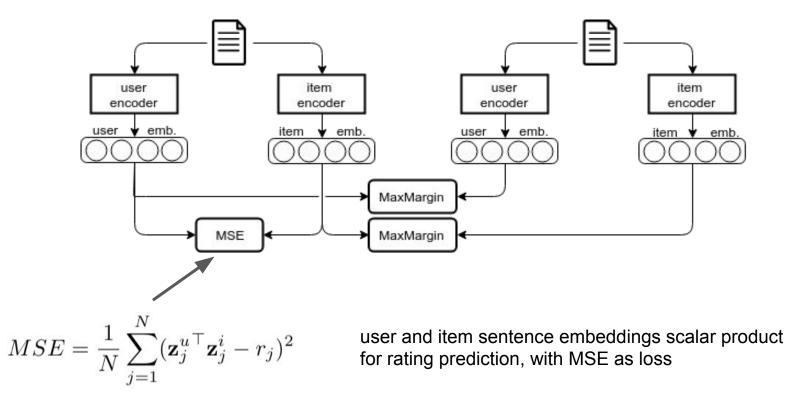
AspeRa: a closer look

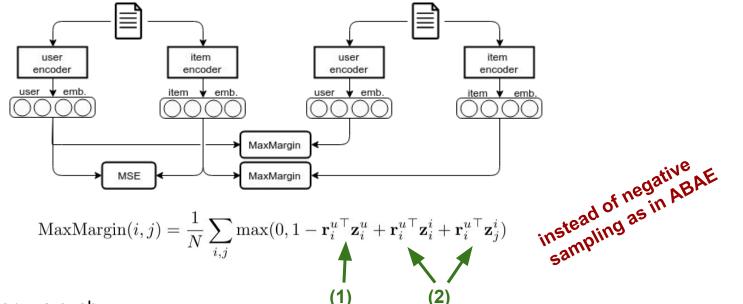


A training sample = two reviews; as in ABAE, each is represented as a set of word embeddings (GloVe/word2vec-SGNS), which are then fed into the ABAE-like encoders

Either those are reviews from the same user, or both are about the same item

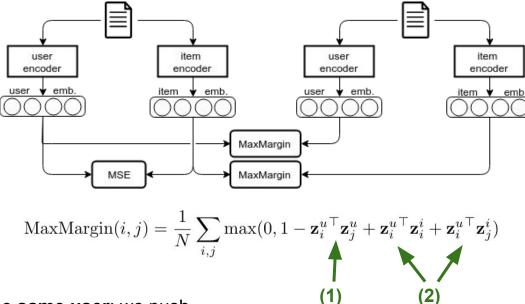
But, unlike in ABAE, there is **no explicit negative sampling**





for every user: we push

- 1) reconstructed and original sentence embeddings to be closer for each user *i*
- 2) original sentence embeddings for both considered items away from the user's reconstructed embedding



the case of the same user: we push

- 1) original sentence embeddings to be closer for each user *i*
- 2) original sentence embeddings for both considered items away from the user

... + almost exactly the same **max-margin losses** of the like for **items**, **not users** in focus

AspeRa: prediction

For prediction just one tower is used, the one with the MSE loss: rating is predicted as a scalar product of a 'user embedding' and an 'item embedding'

Review text IN



Rating value OUT

AspeRa: rating prediction evaluation

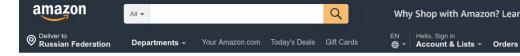
Amazon Instant Videos 5-core reviews

- 37,126 reviews, _
- 5,130 users. _
- 1,685 items,
- 3,454,453 non-unique tokens. -

Amazon Toys and Games 5-core reviews

- 167,597 reviews, -
- 19,412 users, -
- 11,924 items, -
- 17,082,324 non-unique tokens -

http://imcaulev.ucsd.edu/data/amazon/



Best Rated in Toys & Games

Compare the most helpful customer reviews of the best rated products in our Toys & Games store. These products are shortlisted based on overall star rating and the number of customer reviews received by each product in the store, and are refreshed regularly.

Best Rated by Department	Explore top rated products in Toys & Games by category					
Current Department	Toy Figures & Playsets	Arts & Crafts Supplies	Baby & Toddler Toys	Building Toys	Dolls 8	
Toys & Games Toy Figures & Playsets	See more categories					
Arts & Crafts Supplies Baby & Toddler Toys	Top rated products in Toys & Games					
Building Toys						
Dolls & Accessories Dress Up & Pretend Play Kids' Electronics				★★ 4.8 1,212 cust the 1,212 reviews are 4-st		
Games				Clean and simple. Gre		
Grown-Up Toys Hobbies				I from experience that Gr s for little kids these days		
Kids' Furniture & Décor			By AAA			
Learning & Education Toys			Super cute a	Five Stars		
Toys & Games Activities & Amusements			Green Toys of By Ericka	offers their toys in more of	olors my	
Kids' Party Supplies				Another great toy from	n Green To	

AspeRa: quantitative evaluation

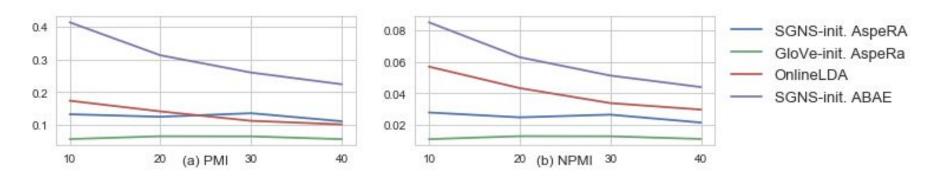
Rating prediction: a document from the test set is fed into the first 'tower', and rating prediction is compared with ground truth

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Model	MSE		
woder	Instant	Toys &	
	Videos	Games	
NMF	0.946	0.821	
DeepCoNN	0.943	0.851	
Attn+CNN	0.936	-	
SVD	0.904	0.788	
HFT	0.888	0.784	
TransRev	0.884	0.784	
NARRE	-	0.769	
AspeRa (GloVe)	0.870	0.730	
AspeRa (SGNS)	0.660	0.571	

Domain-specific custom word vectors have boosted the quality!

Aspect (topic) coherence quantitative analysis



Standard topic coherence measures on Amazon Instant Videos 5-Core dataset:

 PMI-coherence computed using top N words in topics (see x axis)

- its normalized modification (NPMI)

$$PMI(w_i, w_j) = \log \frac{P(w_i, w_j) + \epsilon}{P(w_i)P(w_j)}$$
$$C_{uci} = \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} PMI(w_i, w_j)$$

 $NPMI(w_{i}, w_{j}) = \left(\frac{PMI(w_{i}, w_{j})}{-\log P(w_{i}, w_{j}) + \epsilon}\right)^{\gamma}$

AspeRa: qualitative analysis

Aspect words

1 communities governments incidents poverty unity hardships slaves citizens fought

2 coppola guillermo bram kurosawa toro ridley del prolific ti festivals

3 brisk dialouge manipulation snappy plotlines dialogues taunt camerawork muddled

4 sock vegans peanut stifling bats buh ammonium trollstench vegetables pepsi

5 the a and to is of joe's enters that fatal

Based on SGNS

#	Aspect words
1	protein diagnose cell genes brain membrane interacts interact oxygen spinal
2	boost monetary raise introduce measures credit expects increase push demand
3	towel soaked greasy towels cloth dripping tucked crisp coat buckets
4	offbeat comic parody spoof comedic quirky cinematic campy parodies animated
5	sheesh wham whew hurrah oops yikes c'mon shhh oooh och

Plan

- 1. Recommender systems
- 2. Aspects extraction
- 3. Aspect-based recommendations: AspeRa
- 4. Discussion and future work directions

AspeRa: lessons learned so far

- aspect-based recommendations can be effective
- ABAE can serve as an aspects encoder in larger systems
- the choice of word vectors can matter
- interpretability of the aspects in AspeRa is still a challenge

What next?

- comparison with more recent models, such as ANR (in progress!)
- working on aspects quality
- thorough cold-start tolerance analysis
- cross-domain text-based recommendations

etc.

arXiv.org > cs > arXiv:1901.07829

Computer Science > Computation and Language

AspeRa: Aspect-based Rating Prediction Model

Sergey I. Nikolenko, Elena Tutubalina, Valentin Malykh, Ilya Shenbin, Anton Alekseev

Thank you for your attention!

link to the paper preprint

val@maly.hk

Valentin AspeRa idea author, main contributor anton.m.alexeyev@gmail.com

Anton contributor responsible for evaluation