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Objects of interest: aspects of the entities, 
on which the opinions have been expressed

The tasks:

1) extract “stew” as an aspect
2) group other aspects of the similar kind into one cluster,

“stew”, “mole”, “borscht”, “goulash” … [~“food”?]

Different methods: rule-based, supervised learning, unsupervised learning

Aspect Extraction
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“The stew was hot and delicious”



Unsupervised Aspect Extraction

- does not rely on labeled data
- allows to work with new domains by design

Dominant approaches until recently: BTM and LDA-based topic 
modeling variants; each aspect = topic

ACL2017, ABAE: pretrained word embeddings + self-attention
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What is ABAE, in brief: the model
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T -- aspects embedding matrix K x d
(K aspects representations, each with the same number 
of dimensions as word embeddings)

pt   -- a “share” of each aspect 
in a sentence in concern

Img src: http://mariegalerie.com/showcase/

Two linear feedforward layers:



What is ABAE, in brief: training

Negative sampling and max margin loss

+ the loss function that promotes topic 
diversity:
(U reaches maximum when T is orthogonal)



Why focusing on ABAE?

89 citations* and numerous diverse applications, including:

- Extractive summaries from multiple reviews 
[Angelidis et al. 2018] 1808.08858

- Summary extraction, user profiling 
[Micheltree et al. 2018] 1804.08666

- Text-based recommender  systems 
[Nikolenko et al. 2019] 1901.07829

7* Google Scholar, 29.10.2019

https://arxiv.org/abs/1808.08858
https://arxiv.org/abs/1804.08666
https://arxiv.org/abs/1901.07829


Idea: what if we apply to non-review data?

...to [possibly] enhance other tasks 
[as topic modeling already did]

Yields aspects of challengeable quality!

No surprise: trained on sentences ⇨
   we implicitly assume there are aspects in each sentence

Possible cause: in non-review texts, 
authors are less focused on the topic/object of discussion ⇨
   not every sentence is on the topic
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RQ: can we improve the aspects coherence 
with doing data preprocessing in a slightly 
more sophisticated manner?
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Improving coherence with text preprocessing

- tweet pooling by hashtags in order to improve LDA topics 
[Mehrotra et al.’16]

- term-weighting approach for the LDA input in order to 
promote named entities 
[Krasnashchok et al.’18]

- thesaurus relations-based LDA weights modifications 
improve coherence 
[Loukachevitch et al.’18]
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Proposed approach: removing out-of-domain 
sentences

Given: 

- ID (in-domain) target text collection we are to extract aspects from
- OOD (out-of-domain): unrelated, out-of-domain texts (collected)

Method:

1) split all texts into sentences
2) train a probabilistic classifier separating 

ID sentences from OOD sentences
3) compute the trained classifier scores for all the sentences in ID
4) remove sentences with scores lower than certain threshold
5) train the aspect extraction model on the remaining sentences
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Experimental settings

Data: selected diverse topics from 20Newsgroups

Model (ABAE):
- 15 aspects (topics)
- 20 negative samples
- 10 epochs
- batch size of 256 on one GPU

word2vec: SGNS vectors, trained on the 
corresponding domain (newsgroup)
dimension is 200, 
window size equals 10,
5 negative samples 

Baseline: OnlineLDA model [Hoffman et al.’ 10] 
trained with gensim [Rehurek et al.’ 10] with default 
parameters (same vocabulary, same number of 
aspects) 13
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Experiment results: aspects
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Evaluation: PMI and NPMI

Standard PMI-coherence: 
averaged per-topic 
PMI value for every pair 
of top N tokens computed 
either on the training set 
or the heldout data

And its normalized 
modification
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Evaluation
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Evaluation

17



Conclusion and future work

Proposed technique can improve aspects coherence -- 
even with a simple discriminative BoW classifier without proper 
tuning

Future work:

- try more advanced classifications methods
- develop a reliable technique for the filtering 

threshold selection and make it a tool
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